Previous |  Up |  Next

Article

Title: On $A$-radicals (English)
Author: Tumurbat, S.
Author: Wiegandt, Richard
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 1
Year: 2006
Pages: 113-119
.
Category: math
.
MSC: 16D25
MSC: 16N80
idZBL: Zbl 1150.16018
idMR: MR2217584
.
Date available: 2009-09-25T14:30:33Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136925
.
Reference: [1] BEIDAR K. I.-WIEGANDT R.: Rings with involution and chain conditions.J. Pure Appl. Algebra 87 (1993), 205-220. Zbl 0826.16031, MR 1228152
Reference: [2] GARDNER B. J.: Radicals of abelian groups and associative rings.Acta Math. Acad. Sci. Hungar. 24 (1973), 259-268. MR 0323817
Reference: [3] GARDNER B. J.: Sub-prime radical classes determined by zerorings.Bull. Austral. Math. Soc. 12 (1975), 95-97. Zbl 0286.16005, MR 0379565
Reference: [4] GARDNER B. J.- WIEGANDT R.: Radical Theory of Rings.Monogr. Textbooks Pure Appl. Math. 261, Marcel Dekker, New York-Basel, 2004. MR 2015465
Reference: [5] JAEGERMANN M.: Morita contexts and radicals.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 20 (1972), 619-623. Zbl 0242.16005, MR 0313295
Reference: [6] JAEGERMANN M.-SANDS A. D.: On normal radicals and normal classes of rings.J. Algebra 50 (1978), 337-349. MR 0498659
Reference: [7] SANDS A. D.: On normal radicals.J. London Math. Soc. 11 (1975), 361-365. Zbl 0312.16006, MR 0387337
Reference: [8] SNIDER R. L.: Complemented hereditary radicals.Bull. Austral. Math. Soc. 4 (1971), 307-320. Zbl 0206.32301, MR 0280533
Reference: [9] STEINFELD O.: Quasi-Ideals in Rings and Semigroups.Akademiai Kiado, Budapest, 1978. Zbl 0403.16001, MR 0521258
Reference: [10] STEWART P. N.- WIEGANDT R.: Quasi-ideals and bi-ideals in radical theory of rings.Acta Math. Acad. Sci. Hungar. 39 (1982), 298-294. MR 0653701
.

Files

Files Size Format View
MathSlov_56-2006-1_10.pdf 452.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo