Previous |  Up |  Next

Article

Title: Points sets with low $L_p$ discrepancy (English)
Author: Kritzer, Peter
Author: Pillichshammer, Friedrich
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 1
Year: 2007
Pages: 11-32
.
Category: math
.
MSC: 11K06
MSC: 11K38
idZBL: Zbl 1153.11037
idMR: MR2357804
.
Date available: 2009-09-25T14:35:57Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136938
.
Reference: [1] BECK J.-CHEN W. W. L.: Irregularitгes of Distribution.Cambridge Universitу Press, 1987. MR 0903025
Reference: [2] CHEN W. W. L.-SKRIGANOV M. M.: Davenporťs theorem in the theory of irregularities of point distribution.Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 269 (2000), 339-353. MR 1805869
Reference: [3] DE CLERCK L.: A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley.Monatsh. Math. 101 (1986), 261-278. Zbl 0588.10059, MR 0851948
Reference: [4] DRMOTA M.-TICHY R. F.: Sequences, Discrepancies and Applications.Lecture Notes in Math. 1651, Springer-Verlag, Berlin, 1997. Zbl 0877.11043, MR 1470456
Reference: [5] ENTACHER K.: Haar function based estimates of the star-discrepancy of plane digital nets.Monatsh. Math. 130 (2000), 99-108. Zbl 0948.11030, MR 1767179
Reference: [6] HALTON J. H.-ZAREMBA S. K.: The extreme and the $L^2$ discrepancies of some plane sets.Monatsh. Math. 73 (1969), 316-328. MR 0252329
Reference: [7] KRITZER P.: On some remarkable properties of the two-dimensional Hammersley point set in base 2 J.Théor. Nombres Bordeaux 18 (2006), 203-221. MR 2245882
Reference: [8] KRITZER P.-LARCHER G.-PILLICHSHAMMER F.: A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets.Ann. Mat. Pura Appl. (4) (2007) (To appear). Zbl 1150.11026, MR 2295117
Reference: [9] KUIPERS L.-NIEDERREITER H.: Uniform Distribution of Sequences.John Wileу, New York, 1974. Zbl 0281.10001, MR 0419394
Reference: [10] LARCHER G.-PILLICHSHAMMER F.: Sums of distances to the nearest integer and the discrepancy of digital nets.Acta Arith. 106 (2003), 379-408. Zbl 1054.11039, MR 1957912
Reference: [11] MATOUŠEK J.: Geometric Discrepancy.Algorithms Combin. 18, Springer, Berlin, 1999. Zbl 0930.11060, MR 1697825
Reference: [12] NIEDERREITER H.: Point sets and sequences with small discrepancy.Monatsh. Math. 104 (1987), 273-337. Zbl 0626.10045, MR 0918037
Reference: [13] NIEDERREITER H.: Random Number Generation and Quasi-Monte Carlo Methods.SIAM, Philadelphia, 1992. Zbl 0761.65002, MR 1172997
Reference: [14] PILLICHSHAMMER F.: On the $L_p$-discrepancy of the Hammersley Point Set.Monatsh. Math. 136 (2002), 67-79. Zbl 1010.11043, MR 1908081
Reference: [15] ROTH K. F.: On irregularities of distribution.Mathematika 1 (1954), 73-79. Zbl 0057.28604, MR 0066435
Reference: [16] SCHMIDT W. M.: Irregularities of distribution X.ln: Number Thеory and Algebra, Acadеmic Prеss, Nеw York, 1977, pp. 311-329. Zbl 0373.10020, MR 0491574
Reference: [17] VILENKIN I. V.: Plane nets of Integration.Zh. Vychisl. Mat. Mat. Fiz. 7 (1967), 189-196 [English translation in: Comput. Math. Math. Phys. 7 (1967), 258-267.] Zbl 0187.10701, MR 0205464
.

Files

Files Size Format View
MathSlov_57-2007-1_2.pdf 1.797Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo