Previous |  Up |  Next

Article

Title: FC-modules with an application to cotorsion pairs (English)
Author: Guo, Yonghua
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 513-519
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring. A left $R$-module $M$ is called an FC-module if $M^{+}= \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is a flat right $R$-module. In this paper, some homological properties of FC-modules are given. Let $n$ be a nonnegative integer and $\mathcal{FC}_{n}$ the class of all left $R$-modules $M$ such that the flat dimension of $M^{+}$ is less than or equal to $n$. It is shown that $({^{\bot}(\mathcal{FC}_{n}^{\bot})}, \mathcal{FC}_{n}^{\bot})$ is a complete cotorsion pair and if $R$ is a ring such that $\operatorname{fd}(({_RR})^{+})\leq n$ and $\mathcal{FC}_{n}$ is closed under direct sums, then $(\mathcal{FC}_{n}, \mathcal{FC}_{n}^{\bot})$ is a perfect cotorsion pair. In particular, some known results are obtained as corollaries. (English)
Keyword: character modules
Keyword: flat modules
Keyword: cotorsion pairs
MSC: 16D40
MSC: 16D80
MSC: 16E99
idZBL: Zbl 1203.16008
idMR: MR2583129
.
Date available: 2009-12-22T08:03:19Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137442
.
Reference: [1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.2nd ed., Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl 0765.16001, MR 1245487
Reference: [2] Asensio Mayor J., Martinez Hernandez J.: Flat envelopes in commutative rings.Israel J. Math. 62 (1988), no. 1, 123--128. Zbl 0658.13010, MR 0947834, 10.1007/BF02767358
Reference: [3] Asensio Mayor J., Martinez Hernandez J.: Monomorphic flat envelopes in commutative rings.Arch. Math. (Basel) 54 (1990), no. 5, 430--435. Zbl 0658.13010, MR 1049197, 10.1007/BF01188669
Reference: [4] Cheatham T.J., Stone D.R.: Flat and projective character modules.Proc. Amer. Math. Soc. 81 (1981), no. 2, 175--177. Zbl 0458.16014, MR 0593450, 10.1090/S0002-9939-1981-0593450-2
Reference: [5] Colby R.R.: Rings which have flat injective modules.J. Algebra 35 (1975), 239--252. Zbl 0306.16015, MR 0376763, 10.1016/0021-8693(75)90049-6
Reference: [6] Couchot F.: Exemples d'anneaux auto-fp-injectifs.Comm. Algebra 10 (1982), no. 4, 339--360. Zbl 0484.16010, MR 0649340, 10.1080/00927878208822720
Reference: [7] Ding N.Q., Chen J.L.: The flat dimensions of injective modules.Manuscripta Math. 78 (1993), 165--177. Zbl 0804.16005, MR 1202159, 10.1007/BF02599307
Reference: [8] Eklof P.C., Trlifaj J.: How to make Ext vanish.Bull. London Math. Soc. 33 (2001), no. 1, 41--51. Zbl 1030.16004, MR 1798574, 10.1112/blms/33.1.41
Reference: [9] Enochs E.E., Jenda O.M.G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000. Zbl 0952.13001, MR 1753146
Reference: [10] Enochs E.E., Jenda O.M.G., Xu J.: The existence of envelopes.Rend. Sem. Mat. Univ. Padova 90 (1990), 45--51. Zbl 0803.16001, MR 1257131
Reference: [11] Fieldhouse D.J.: Character modules.Comment. Math. Helv. 46 (1971), 274-276. Zbl 0258.16028, MR 0294408, 10.1007/BF02566844
Reference: [12] Göbel R., Trlifaj J.: Approximations and Endomorphism Algebras of Modules.de Gruyter Expositions in Mathematics, 41, de Gruyter, Berlin, 2006. MR 2251271
Reference: [13] Holm H., Jøgensen P.: Covers, preenvelopes, and purity.Illinois J. Math. 52 (2008), 691--703. MR 2524661
Reference: [14] Jain S.: Flat and FP-injectivity.Proc. Amer. Math. Soc. 41 (1973), no. 2, 437--442. Zbl 0246.16013, MR 0323828, 10.1090/S0002-9939-1973-0323828-9
Reference: [15] Mao L.X., Ding N.Q.: Envelopes and covers by modules of finite FP-injective and flat dimensions.Comm. Algebra 35 (2007), 835--849. Zbl 1122.16007, MR 2305235
Reference: [16] Ramamurthi V.S.: On modules with projective character modules.Math. Japon. 23 (1978), 181--184. Zbl 0412.16015, MR 0517797
Reference: [17] Rada J., Saorín M.: Rings characterized by (pre)envelopes and (pre)covers of their modules.Comm. Algebra 26 (1998), 899--912. Zbl 0908.16003, MR 1606190, 10.1080/00927879808826172
Reference: [18] Stenström B.: Coherent rings and FP-injective modules.J. London Math. Soc. 2 (1970), 323--329. MR 0258888, 10.1112/jlms/s2-2.2.323
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_2.pdf 216.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo