[1] Agarwal R.P., Avery R., Henderson J., O'Regan D.:
The five functionals fixed point theorem generalized to multivalued maps. J. Nonlinear Convex Anal. 4 (2003), 455--462.
MR 2026456 |
Zbl 1065.47050
[5] Andres J., Górniewicz L.:
Topological Fixed Point Principles for Boundary Value Problems. Kluwer Academic Publishers, Dordrecht, 2003.
MR 1998968
[7] Benchohra M., Ntouyas S.K.:
A note on a three point boundary value problem for second order differental inclusions. Math. Notes (Miskolc) 2 (2001), 39--47.
MR 1854436
[8] Benchohra M., Ouahab A.:
Upper and lower solutions method for differential inclusions with integral boundary conditions. J. Appl. Math. Stoch. Anal. 2006, Art. ID 10490, 10 pp.
MR 2212591 |
Zbl 1122.34006
[10] Dhage B.C., Ntouyas S.K., Cho Y.J.:
On the second order discontinuous differential inclusions. J. Appl. Funct. Anal. 1 (2006), 469--476.
MR 2220805 |
Zbl 1108.34302
[13] Erbe L., Ma R., Tisdell C.C.:
On two point boundary value problems for second order differential inclusions. Dynam. Systems Appl. 15 (2006), 79--88.
MR 2194094 |
Zbl 1112.34008
[14] Fitzpatrick P.M., Petryshyn W.V.:
Fixed point theorems and the fixed point index for multivalued mappings in cones. J. London Math. Soc. 12 (1975/76), 75--85.
MR 0405180 |
Zbl 0329.47022
[16] Franco D., Infante G., O'Regan D.:
Nontrivial solutions in abstract cones for Hammerstein integral systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14 (2007), 837--850.
MR 2369916 |
Zbl 1139.45004
[17] Guo D., Lakshmikantham V.:
Nonlinear Problems in Abstract Cones. Academic Press, Boston, 1988.
MR 0959889 |
Zbl 0661.47045
[21] Infante G.:
Nonzero solutions of second order problems subject to nonlinear BCs. Dynamic systems and applications. Vol. 5, Dynamic, Atlanta, GA, (2008), 222--226.
MR 2468144
[24] Infante G., Webb J.R.L.:
Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations. Proc. Edinb. Math. Soc. 49 (2006), 637--656.
DOI 10.1017/S0013091505000532 |
MR 2266153
[26] Karakostas G.L., Tsamatos P.Ch.:
Existence of multiple positive solutions for a nonlocal boundary value problem. Topol. Methods Nonlinear Anal. 19 (2002), 109--121.
MR 1921888 |
Zbl 1071.34023
[27] Krasnosel'skiĭ M.A., Zabreĭko P.P.:
Geometrical Methods of Nonlinear Analysis. Springer, Berlin, 1984.
MR 0736839
[28] Lan K.Q.:
Multiple positive solutions of Hammerstein integral equations with singularities. Diff. Eqns and Dynam. Syst. 8 (2000), 175--195.
MR 1862603 |
Zbl 0977.45001
[30] Lan K.Q.:
Positive characteristic values and optimal constants for three-point boundary value problems. Differential & Difference Equations and Applications, 623--633, Hindawi Publ. Corp., New York, 2006.
MR 2309394 |
Zbl 1129.34008
[32] Lan K.Q., Yang G.C.:
Optimal constants for two point boundary value problems. Discrete Contin. Dyn. Syst., suppl. (2007), 624--633.
MR 2409898 |
Zbl 1163.34328
[33] Lasota A., Opial Z.:
An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781--786.
MR 0196178 |
Zbl 0151.10703
[34] Ma T.:
Topological degrees of set-valued compact fields in locally convex spaces. Dissertationes Math. (Rozprawy Mat.) 92 (1972), 1--42.
MR 0309103 |
Zbl 0211.25903
[41] Webb J.R.L.:
Multiple positive solutions of some nonlinear heat flow problems. Discrete Contin. Dyn. Syst., suppl. (2005), 895--903.
MR 2192752 |
Zbl 1161.34007
[43] Webb J.R.L.:
Fixed point index and its application to positive solutions of nonlocal boundary value problems. Seminar of Mathematical Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 181--205.
MR 2276962 |
Zbl 1124.47040