Previous |  Up |  Next

Article

Title: Some sufficient conditions for zero asymptotic density and the expression of natural numbers as sum of values of special functions (English)
Author: Jahoda, Pavel
Author: Pěluchová, Monika
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 13
Issue: 1
Year: 2005
Pages: 13-18
Summary lang: English
.
Category: math
.
Summary: This paper generalizes some results from another one, namely [3]. We have studied the issues of expressing natural numbers as a sum of powers of natural numbers in paper [3]. It means we have studied sets of type $A = \lbrace n_1^{ k_1}+n_2^{ k_2}+ \dots + n_m^{ k_m} \mid n_i \in \mathbb {N}\cup \lbrace 0 \rbrace , i = 1, 2 \dots , m, (n_1, n_2, \dots ,n_m) \ne (0,0, \dots , 0 )\rbrace , $ where $k_1, k_2, \dots , k_m \in \mathbb {N}$ were given natural numbers. Now we are going to study a more general case, i.e. sets of natural numbers that are expressed as sum of integral parts of functional values of some special functions. It means that we are interested in sets of natural numbers in the form \[ k = [f_1 (n_1)]+ [f_2 (n_2)]+ \dots + [f_m(n_m)]. \] (English)
Keyword: Asymptotic density
MSC: 11B05
MSC: 11B75
MSC: 11P99
idZBL: Zbl 1207.11020
idMR: MR2290414
.
Date available: 2009-12-29T09:16:10Z
Last updated: 2015-03-15
Stable URL: http://hdl.handle.net/10338.dmlcz/137467
.
Reference: [1] Rieger G.J.: Zum Satz von Landau über die Summe aus zwei Quadraten., J. Riene Augew. Math. 244(1970), 189–200. MR 0269594
Reference: [2] Landau E.: Über die Einteilung der ...Zahlen in 4 Klassen ..., Arch. Math. Phys. (3), 13 (1908) 305–312.
Reference: [3] Jahoda P.: Notes on the expression of natural numbers as sum of powers., Tatra Mt. Math. Publ. 34 (2005), 1–11, Bratislava, Mathematical Institute Slovak Academy of Sciences. Zbl 1150.11436, MR 2206910
.

Files

Files Size Format View
ActaOstrav_13-2005-1_2.pdf 256.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo