Previous |  Up |  Next

Article

Title: Remarks on several types of convergence of bounded sequences (English)
Author: Baláž, V.
Author: Strauch, O.
Author: Šalát, T.
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 14
Issue: 1
Year: 2006
Pages: 3-12
.
Category: math
.
Summary: In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, ${\cal I}_u$-convergence, $\varphi $-convergence, almost convergence, strong $p$-Cesàro convergence and uniformly strong $p$-Cesàro convergence. (English)
Keyword: sequence
Keyword: statistical convergence
Keyword: ${\cal I}$-convergence
Keyword: almost convergence
Keyword: Cesàro convergence
Keyword: uniform convergence
Keyword: Euler function
Keyword: prime number
Keyword: $\varphi $-convergence
MSC: 11K31
MSC: 40A05
MSC: 40A25
MSC: 40D25
idZBL: Zbl 1124.40001
idMR: MR2298906
.
Date available: 2009-12-29T09:18:17Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137474
.
Reference: [1] BALÁŽ, V., ŠALÁT, T.: Uniform density $u$ and corresponding $I_u$-convergence,.Math. Communication 11 (2006), 1–7.
Reference: [2] BROWN, T.C., FREEDMAN, A.R.: Arithmetic progressions in lacunary sets.Mountain J. Math. 17 (1987), 587–596. MR 0908265
Reference: [3] BROWN, T.C., FREEDMAN, A.R.: The uniform density of sets of integers and Fermat’s Last Theorem.C. R. Math. Ref. Acad. Sci. Canada XII (1990), 1–6.. MR 1043085
Reference: [4] BOURBAKI, N.: Éléments De Mathématique Topologie Générale Livre III.Russian translation: Obščaja topologija Osnovnye struktury, Nauka, Moskva, 1968.
Reference: [5] CONNOR, J.S.: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458
Reference: [6] CONNOR, J.S.: Two valued measures and summability,.Analysis 10 (1990), 1–6. Zbl 0726.40009, MR 1085803
Reference: [7] ERDÖS, P.: Solution of advanced problems: $\varphi $-convergence.Amer. Math. Monthly 85 (1978), 122-123.
Reference: [8] FAST, H.: Sur la convergence statistique.Coll. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548
Reference: [9] FRIDY, J.A.: On statistical convergence.Analysis 5 (1985), 301-313. Zbl 0588.40001, MR 0816582
Reference: [10] GOFFMAN, C.: Functions of finite Baire type.Amer. Math. Monthly 67 (1960), 164-165. Zbl 0093.06104, MR 0118788
Reference: [11] KOLODZIEJ, W.: Selected Parts of Mathematical Analysis.PWN, Warszawa, 1970. (Polish) MR 0514704
Reference: [12] KOSTYRKO, P., ŠALÁT, T., WILCZINSKI, W.: ${\cal I}$-convergence.Real. Anal. Exchange 26 (2000–2001), 669-686. MR 1844385
Reference: [13] KOSTYRKO, P., MÁČAJ, M., ŠALÁT, T., SLEZIAK, M.: ${\cal I}$-convergence and extremal ${\cal I}$-limit points.Math. Slovaca 55 (2005), no. 4,, 443-464. MR 2181783
Reference: [14] KOVÁČ, E.: On $\varphi $-convergence and $\varphi $-density.Math. Slovaca 55 (2005), no. 3, 139-150. Zbl 1113.40002, MR 2181010
Reference: [15] KUIPERS, L., NIEDERREITER, H.: Uniform Distribution of Sequences.John Wiley & Sons, New York, 1974. MR 0419394
Reference: [16] LORENTZ, G.G.: A contribution to theory of divergent sequences.Acta Math. 80 (1948), 167-190. MR 0027868
Reference: [17] MADDOX, I.J.: A new type of convergence.Math. Proc. Cambridge Phil. Soc. 83 (1978), 61-64. Zbl 0392.40001, MR 0493034
Reference: [18] MADDOX, I.J.: Steinhaus type theorems for sumability matrices.Proc. Amer. Math Soc. 45 (1974), 209-213. MR 0364938
Reference: [19] MILLER, H.I., ORHAN, C.: On almost convergent and statistically convergent subsequences.Acta Math. Hung. 43 (2001), 135-151. MR 1924673
Reference: [20] PETERSEN, G.: Regular Matrix Transformations.Mc-Graw Hill Publ. Comp., London-New York-Toronto-Sydney, 1966. Zbl 0159.35401, MR 0225045
Reference: [21] SCHOENBERG, I.J.: The integrability of certain functions and related sumability methods.Amer. Math. Monthly 66 (1959), 361–375. MR 0104946
Reference: [22] STRAUCH, O., PORUBSKÝ, Š.: Distribution of Sequences: A Sampler.Schriftenreihe der Slowakischen Akademie der Wissenschaften, Band 1, Peter Lang, Frankfurt am Main, 2005. MR 2290224
Reference: [23] ŠALÁT, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239
Reference: [24] THOMSON, B.S.  : Real Functions,  .Springer-Verlag  , Berlin-Göttingen-Heidelberg-New York-Tokyo, 1985. Zbl 0581.26001, MR 0818744
Reference: [25] ZAJÍČEK, L.: Porosity and $\sigma $-porosity.Real. Anal. Exchange 13 (1987–88), 314-350. MR 0943561
Reference: [26] WIERDL, M.: Almost everywhere convergence and recurrence along subsequences in ergodic theory.Ph.D. Thesis, The Ohio State University.
Reference: [27] WINKLER, R.: Hartman sets, functions and sequences - a survey.Advanced Studies in Pure Mathematics 43 (2006), 1–27. MR 2405618
.

Files

Files Size Format View
ActaOstrav_14-2006-1_1.pdf 293.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo