Title:
|
Truncatable primes and unavoidable sets of divisors (English) |
Author:
|
Dubickas, Artūras |
Language:
|
English |
Journal:
|
Acta Mathematica Universitatis Ostraviensis |
ISSN:
|
1214-8148 |
Volume:
|
14 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
21-25 |
. |
Category:
|
math |
. |
Summary:
|
We are interested whether there is a nonnegative integer $u_0$ and an infinite sequence of digits $u_1, u_2, u_3, \dots $ in base $b$ such that the numbers $u_0
b^n+u_1 b^{n-1}+\dots + u_{n-1} b +u_n,$ where $n=0,1,2, \dots ,$ are all prime or at least do not have prime divisors in a finite set of prime numbers $S.$ If any such sequence contains infinitely many elements divisible by at least one prime number $p \in S,$ then we call the set $S$ unavoidable with respect to $b$. It was proved earlier that unavoidable sets in base $b$ exist if $b
\in \lbrace 2,3,4,6\rbrace ,$ and that no unavoidable set exists in base $b=5.$ Now, we prove that there are no unavoidable sets in base $b
\geqslant 3$ if $b-1$ is not square-free. In particular, for $b=10,$ this implies that, for any finite set of prime numbers $\lbrace p_1,
\dots , p_k\rbrace ,$ there is a nonnegative integer $u_0$ and $u_1, u_2,
\dots \in \lbrace 0,1,\dots ,9\rbrace $ such that the number $u_0 10^n + u_1
10^{n-1}+\dots +u_{n}$ is not divisible by $p_1, \dots , p_k$ for each integer $n \geqslant 0.$ (English) |
Keyword:
|
Prime numbers |
Keyword:
|
truncatable primes |
Keyword:
|
integer expansions |
Keyword:
|
square-free numbers |
MSC:
|
11A41 |
MSC:
|
11A63 |
MSC:
|
11B50 |
idZBL:
|
Zbl 1127.11010 |
idMR:
|
MR2298909 |
. |
Date available:
|
2009-12-29T09:19:05Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/137479 |
. |
Reference:
|
[1] Angell I.O., Godwin H.J.: On truncatable primes., Math. Comp., 31 (1977), 265–267. Zbl 0347.10009, MR 0427213, 10.1090/S0025-5718-1977-0427213-2 |
Reference:
|
[2] Bugeaud Y., Dubickas A.: Fractional parts of powers and Sturmian words., C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 69–74. Zbl 1140.11318, MR 2153958 |
Reference:
|
[3] Dubickas A.: Integer parts of powers of Pisot and Salem numbers., Archiv der Math., 79 (2002), 252–257. Zbl 1004.11059, MR 1944949, 10.1007/s00013-002-8311-4 |
Reference:
|
[4] Dubickas A.: On the distance from a rational power to the nearest integer., J. Number Theory, 117 (2006), 222–239. Zbl 1097.11035, MR 2204744, 10.1016/j.jnt.2005.07.004 |
Reference:
|
[5] Dubickas A. A. Novikas : Integer parts of powers of rational numbers., Math. Zeitschr., 251 (2005), 635–648. MR 2190349, 10.1007/s00209-005-0827-4 |
Reference:
|
[6] Forman W. H.N. Shapiro: An arithmetic property of certain rational powers., Comm. Pure Appl. Math., 20 (1967), 561–573. MR 0211977, 10.1002/cpa.3160200305 |
Reference:
|
[7] Guy R.K.: Unsolved problems in number theory., Springer–Verlag, New York, 1994. Zbl 0805.11001, MR 1299330 |
Reference:
|
[8] Kahan S. S. Weintraub: Left truncatable primes., J. Recreational Math., 29 (1998), 254–264. |
Reference:
|
[9] Koksma J.F.: Ein mengen-theoretischer Satz über Gleichverteilung modulo eins., Compositio Math., 2 (1935), 250–258. MR 1556918 |
Reference:
|
[10] Weisstein E.W.: Truncatable prime., From MathWorld - A Wolfram Web Resourse, http://mathworld.wolfram.com/TruncatablePrime.html. |
Reference:
|
[11] Zaimi T.: On integer and fractional parts powers of Salem numbers., Archiv der Math., 87 (2006), 124–128. MR 2250906, 10.1007/s00013-006-1560-x |
. |