Previous |  Up |  Next

Article

Title: Lucas balancing numbers (English)
Author: Liptai, Kálmán
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 14
Issue: 1
Year: 2006
Pages: 43-47
.
Category: math
.
Summary: A positive $n$ is called a balancing number if \[1+2+\cdots +(n-1)=(n+1)+(n+2)+\cdots +(n+r).\] We prove that there is no balancing number which is a term of the Lucas sequence. (English)
Keyword: Baker method
Keyword: Pell equations
Keyword: recurrence sequences
MSC: 11B39
MSC: 11D45
MSC: 11J86
idZBL: Zbl 1134.11005
idMR: MR2298912
.
Date available: 2009-12-29T09:19:52Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137482
.
Reference: [1] Baker A., Davenport H.: The equations $3x^2-2=y^2$ and $8x^2-7=z^2$., Quart. J. Math. Oxford (2) 20 (1969), 129–137. MR 0248079
Reference: [2] Baker A., Wüstholz G.: Logarithmic forms and group varieties., J. reine angew. Math., 442 (1993), 19–62. MR 1234835
Reference: [3] Behera A., Panda G. K.: On the square roots of triangular numbers., Fibonacci Quarterly, 37 No. 2 (1999), 98–105. Zbl 0962.11014, MR 1690458
Reference: [4] Ferguson D. E.: Letter to the editor., Fibonacci Quarterly, 8 (1970), 88–89.
Reference: [5] Liptai K. : Fibonacci balancing numbers., Fibonacci Quarterly 42 (2004), 330–340. Zbl 1067.11006, MR 2110086
Reference: [6] Shorey T. N., Tijdeman R.: Exponential diophantine equations., Cambridge University Press, (1986). Zbl 0606.10011, MR 0891406
Reference: [7] Szalay L.: A note on the practical solution of simultaneous Pell type equations., submitted to Comp. Math.
.

Files

Files Size Format View
ActaOstrav_14-2006-1_7.pdf 238.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo