Previous |  Up |  Next

Article

Title: Short remark on Fibonacci-Wieferich primes (English)
Author: Klaška, Jiří
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 15
Issue: 1
Year: 2007
Pages: 21-25
Summary lang: English
.
Category: math
.
Summary: This paper has been inspired by the endeavour of a large number of mathematicians to discover a Fibonacci-Wieferich prime. An exhaustive computer search has not been successful up to the present even though there exists a conjecture that there are infinitely many such primes. This conjecture is based on the assumption that the probability that a prime $p$ is Fibonacci-Wieferich is equal to $1/p$. According to our computational results and some theoretical consideratons, another form of probability can be assumed. This observation leads us to interesting consequences. (English)
Keyword: Fibonacci-Wieferich primes
Keyword: heuristics on distributions of primes with arithmetic constraints
Keyword: Fibonacci numbers
Keyword: Wall-Sun-Sun prime
Keyword: modular periodicity
Keyword: periodic sequence
MSC: 11A07
MSC: 11B39
MSC: 11B50
MSC: 11Y99
idZBL: Zbl 1203.11021
idMR: MR2418779
.
Date available: 2009-12-29T09:22:25Z
Last updated: 2015-03-15
Stable URL: http://hdl.handle.net/10338.dmlcz/137492
.
Reference: [1] R. Crandall K. Dilcher C. Pomerance: A search for Wieferich and Wilson primes.Math. Comp. 66 (1997) 443-449. MR 1372002
Reference: [2] H. Davenport: Multiplicative Number Theory.Springer-Verlag New York 3rd ed. (2000). Zbl 1002.11001, MR 1790423
Reference: [3] A.-S. Elsenhans J. Jahnel: The Fibonacci sequence modulo p2 - An investigation by computer for p < 10**14.The On-Line Encyclopedia of Integer Sequences (2004) 27 p.
Reference: [4] Hua-Chieh Li: Fibonacci primitive roots and Wall's question.The Fibonacci Quarterly 37 (1999) 77-84. Zbl 0936.11011, MR 1676707
Reference: [5] J. Klaka: Criteria for Testing Wall's Question.preprint (2007).
Reference: [6] R. J. Mcintosh E. L. Roettger: A search for Fibonacci-Wieferich and Wolstenholme primes.Math. Comp. 76 (2007) 2087-2094. MR 2336284, 10.1090/S0025-5718-07-01955-2
Reference: [7] L. Skula: A note on some relations among special sums of reciprocals modulo p.to appear in Math. Slovaca (2008). Zbl 1164.11001, MR 2372821
Reference: [8] Zhi-Hong Sun, Zhi-Wei Sun: Fibonacci Numbers and Fermat's Last Theorem.Acta Arith. 60 (1992) 371-388. MR 1159353
Reference: [9] D. D. Wall: Fibonacci Series Modulo m.Amer. Math. Monthly 67 no. 6, (1960) 525-532. Zbl 0101.03201, MR 0120188, 10.2307/2309169
Reference: [10] H. C Williams: A Note on the Fibonacci Quotient Fp-e/p.Canad. Math. Bull. 25 (1982) 366-370. MR 0668957, 10.4153/CMB-1982-053-0
.

Files

Files Size Format View
ActaOstrav_15-2007-1_4.pdf 961.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo