Previous |  Up |  Next

Article

Title: On a generalization of Helmholtz conditions (English)
Author: Malíková, Radka
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 17
Issue: 1
Year: 2009
Pages: 11-21
Summary lang: English
.
Category: math
.
Summary: Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ($n=1$), and obtain a generalization of Helmholtz conditions to this case. (English)
Keyword: Lagrangian
Keyword: Euler-Lagrange form
Keyword: dynamical form
Keyword: Helmholtz-type form
Keyword: Helmholtz form
Keyword: Helmholtz conditions
MSC: 58A10
MSC: 58A20
MSC: 58E30
MSC: 70G45
idZBL: Zbl 1238.58001
idMR: MR2582956
.
Date available: 2010-03-08T21:26:23Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137524
.
Reference: [1] Anderson, I.: The Variational Bicomplex.(Technical Report, Utah State University, 1989)
Reference: [2] Crampin, M., Prince, G. E., Thompson, G.: A geometric version of the Helmholtz conditions in time dependent Lagrangian dynamics.J. Phys. A: Math. Gen. 17 (1984) 1437–1447 MR 0748776, 10.1088/0305-4470/17/7/011
Reference: [3] Dedecker, P., Tulczyjew, W. M.: Spectral sequences and the inverse problem of the calculus of variation.Proc. Internat. Coll. on Diff. Geom. Methods in Math. Phys., Salamanca 1979, In: Lecture Notes in Math. 836 (Berlin: Springer, 1980) 498–503 MR 0607719
Reference: [4] Helmholtz, H.: Über der physikalische Bedeutung des Princips der kleinsten Wirkung.J. Reine Angew. Math. 100 (1887) 137–166
Reference: [5] Klapka, L.: Euler-Lagrange expressions and closed two-forms in higher order mechanics.In: Geometrical Methods in Physics, Proc. Conf. on Diff. Geom. and Appl. Vol. 2, Nové Město na Moravě, 1983, Krupka, D., Ed. (J. E. Purkyně Univ. Brno, Czechoslovakia, 1984) 149–153 Zbl 0552.70011, MR 0793205
Reference: [6] Krupka, D.: Lepagean forms in higher order variational theory.In: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Proc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (Accad. Sci. Torino, Torino, 1983) 197–238 Zbl 0572.58003, MR 0773488
Reference: [7] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibered Manifolds.Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica 14, Brno, Czechoslovakia, 1973; ArXiv:math-ph/0110005
Reference: [8] Krupka, D.: Variational Sequence on Finite Order Jet Spaces.In: Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, Janyška, J. and Krupka, D., Eds. (World Scientific, Singapore, 1990) 236–254 MR 1062026
Reference: [9] Krupka, D.: Variational Sequences in Mechanics.Calc. Var. 5, 557–583(1997) Zbl 0892.58001, MR 1473308, 10.1007/s005260050079
Reference: [10] Krupka, D.: Global variational principles: Foundations and current problems.In: Global Analysis and Applied Mathematics (AIP Conference Proceedings 729, American Institute of Physics, 2004) 3–18 Zbl 1121.58019, MR 2215681
Reference: [11] Krupka, D., Šeděnková, J.: Variational Sequences and Lepage Forms.In: Proceedings of Conference Differential Geometry and its Applications, Prague, 2004, Ed. by Bureš, J., Kowalski, O., Krupka, D., Slovák, J. (Charles Univ., Prague, Czech Republic, 2005), pp. 605–615 Zbl 1115.35349
Reference: [12] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form.Differential Geometry and its Applications 25 (2007) 518–542 MR 2351428
Reference: [13] Krupková, O.: Lepagean $2$-Forms in Higher Order Hamiltonian Mechanics, I. Regularity.Arch. Math. (Brno) 22 (1986) 97–120 MR 0868124
Reference: [14] Krupková, O.: The Geometry of Ordinary Variational Equations.Lecture Notes in Math. 1678 (Springer, Berlin, 1997) MR 1484970
Reference: [15] Krupková, O., Prince, G.E.: Lepage Forms, Closed $2$-Forms and Second-Order Ordinary Differential Equations.Russian Mathematics (Iz. VUZ), 2007, Vol. 51, No. 12, pp. 1–16 MR 2402204
Reference: [16] Krupková, O., Prince, G.E.: Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations.In: Handbook of Global Analysis (Elsevier, 2008) 841–908 Zbl 1236.58027, MR 2389647
Reference: [17] Lepage, Th.: Sur les champs géodésiques du Calcul des Variations.Bull. Acad. Roy. Belg., Cl. des Sciences 22 (1936) 716–729 Zbl 0016.26201
Reference: [18] Saunders, D. J.: The Geometry of Jet Bundles.(Cambridge University Press, 1989) Zbl 0665.58002, MR 0989588
Reference: [19] Takens, F.: A Global Version of the Inverse Problem of the Calculus of Variations.J. Diff. Geom. 14, 543–562(1979) Zbl 0463.58015, MR 0600611
.

Files

Files Size Format View
ActaOstrav_17-2009-1_3.pdf 297.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo