Previous |  Up |  Next

Article

Title: $\partial$-closed sets in biclosure spaces (English)
Author: Boonpok, Chawalit
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 17
Issue: 1
Year: 2009
Pages: 51-66
Summary lang: English
.
Category: math
.
Summary: In the present paper, we introduce and study the concept of $\partial $-closed sets in biclosure spaces and investigate its behavior. We also introduce and study the concept of $\partial $-continuous maps. (English)
Keyword: closure operator
Keyword: closure space
Keyword: biclosure space
Keyword: $\partial$-closed set
Keyword: $\partial$-continuous map
MSC: 54A05
MSC: 54E55
idZBL: Zbl 1237.54026
idMR: MR2582959
.
Date available: 2010-03-08T21:28:58Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137527
.
Reference: [1] Čech, E.: Topological Spaces.Topological Papers of Eduard Čech, Academia, Prague (1968), 436–472
Reference: [2] Chvalina, J.: On homeomorphic topologies and equivalent set-systems.Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII (1976), 107–116 Zbl 0349.54002, MR 0438267
Reference: [3] Chvalina, J.: Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings.Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XVII (1981), 81–86 Zbl 0478.54001, MR 0673249
Reference: [4] Dujunji, J.: Topology.Allyn and Bacon, Boston, 1966 MR 0193606
Reference: [5] Gupta, M. K., Singh, Rupen Pratap: On fuzzy pairwise s-continuous and fuzzy pairwise s-open mapping.Int. J. Pure & Appl. Math. Sci. 1 (2004), 101–109
Reference: [6] Kelly, K. C.: Bitopological spaces.Pro. London Math. Soc. 3(13) (1969), 71–79 MR 0143169
Reference: [7] Noiri, T., Popa, V.: Some properties of weakly open functions in bitopological spaces.Novi Sad J. Math. 36 (1) (2006), 47–54 Zbl 1164.54366, MR 2301925
Reference: [8] Sen, S. K., Mukherjee, M. N.: On extension of pairwise $\theta $-continuous maps.Internat. J. Math. Sci. 19 (1) (1966), 53–56 MR 1361976
Reference: [9] Skula, L.: Systeme von stetigen abbildungen.Czech. Math. J., 17 (92) (1967), 45–52 Zbl 0173.24803, MR 0206917
Reference: [10] Šlapal, J.: Closure operations for digital topology.Theoret. Comput. Sci., 305 (2003), 457–471 Zbl 1081.68111, MR 2013581, 10.1016/S0304-3975(02)00708-9
.

Files

Files Size Format View
ActaOstrav_17-2009-1_6.pdf 254.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo