Previous |  Up |  Next

Article

Title: Flocking control of multi-agent systems with application to nonholonomic multi-robots (English)
Author: Li, Qin
Author: Jiang, Zhong-Ping
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 1
Year: 2009
Pages: 84-100
Summary lang: English
.
Category: math
.
Summary: In this paper, we revisit the artificial potential based approach in the flocking control for multi-agent systems, where our main concerns are migration and trajectory tracking problems. The static destination or, more generally, the moving reference point is modeled by a virtual leader, whose information is utilized by some agents, called active agents (AA), for the controller design. We study a decentralized flocking controller for the case where the set of AAs is fixed. Some results on the velocity consensus, collision avoidance, group configuration and robustness are proposed. Further, we apply the proposed controller to the observer based flocking control of a team of nonholonomic mobile robots. (English)
Keyword: multi-agent systems
Keyword: flocking control
Keyword: nonholonomic mobile robots
Keyword: decentralized control
MSC: 70E60
MSC: 93A14
MSC: 93C15
MSC: 93C85
idZBL: Zbl 1158.93305
idMR: MR2489582
.
Date available: 2010-06-02T18:20:56Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/139998
.
Reference: [1] K. D. Do, Z. P. Jiang, and J. Pan: A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots.IEEE Trans. Robotics and Automation 20 (2004), 3, 589–594.
Reference: [2] C. Godsil and G. Royle: Algebraic Graph Theory.Springer-Verlag, New York 2001. MR 1829620
Reference: [3] G. H. Hardy, J. E. Littlewood, and G. Pólya: Inequalities.Second edition. Cambridge University Press, Cambridge 1952. MR 0046395
Reference: [4] Y. Hong, J. Hu, and L. Gao: Tracking control for multi-agent consensus with an active leader and variable topology.Automatica 42 (2006), 7, 1177–1182. MR 2230987
Reference: [5] Z. P. Jiang and H. Nijmeijer: Tracking control of mobile robots: a case study in backstepping.Automatica 33 (1997), 7, 1393–1399. MR 1467813
Reference: [6] H. Khalil: Nonlinear Systems.Third edition. Prentice Hall, Englewood Cliffs, NJ 2002. Zbl 1140.93456
Reference: [7] J. R. T. Lawton, R. W. Beard, and B. J. Young: A decentralized approach to formation maneuvers.IEEE Trans. Robotics and Automation 19 (2003), 6, 933–941.
Reference: [8] N. E. Leonard and E. Fiorelli: Virtual leaders, artificial potentials and coordinated control of groups.In: Proc. IEEE Conference on Decision and Control, 2001, pp. 2968–2973.
Reference: [9] Q. Li and Z. P. Jiang: Decentralized Control Strategies for Connectivity Guaranteed Tracking of Multi-Agent Systems.In: 7th World Congress. Intelligent Control and Automation, 2008, pp. 323–328.
Reference: [10] A. Micaelli and C. Samson: Trajectory Tracking for Unicycle-type and Wwo-steering-wheels Mobile Robots.Technical Report 2097, INRIA, 1993.
Reference: [11] R. Olfati-Saber: Flocking for multi-agent dynamic systems: algorithms and theory.IEEE Trans. Automat. Control 51 (2006), 3, 401–420. MR 2205679
Reference: [12] W. Ren and E. Atkins: Distributed multi-vehicle coordinated control via local information exchange.Internat. J. Robust and Nonlinear Control 17 (2007), 10–11, 1002–1033. MR 2333296
Reference: [13] H. G. Tanner, A. Jadbabaie, and G. J. Pappas: Flocking in fixed and switching networks.IEEE Trans. Automat. Control 52 (2007), 5, 863–868. MR 2324246
.

Files

Files Size Format View
Kybernetika_45-2009-1_7.pdf 941.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo