Previous |  Up |  Next

Article

Title: Non-fragile controllers for a class of time-delay nonlinear systems (English)
Author: Bakule, Lubomír
Author: Sen, Manuel de la
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 1
Year: 2009
Pages: 15-32
Summary lang: English
.
Category: math
.
Summary: The paper deals with the synthesis of a non-fragile state controller with reduced design complexity for a class of continuous-time nonlinear delayed symmetric composite systems. Additive controller gain perturbations are considered. Both subsystems and interconnections include time-delays. A low-order control design system is first constructed. Then, stabilizing controllers with norm bounded gain uncertainties are designed for the control design system using linear matrix inequalities (LMIs) for both delay-independent and delay-dependent stability approaches. The main result shows that when such a non-fragile low-order controllers are implemented into each local controller of the decentralized controller for the global system, the global closed-loop systems are globally asymptotically stable. (English)
Keyword: decentralized control
Keyword: large scale complex systems
Keyword: nonlinear systems
Keyword: continuous-time systems
Keyword: delay
Keyword: reduced-order systems
MSC: 93A14
MSC: 93A15
MSC: 93B51
MSC: 93C10
MSC: 93D15
idZBL: Zbl 1158.93302
idMR: MR2489578
.
Date available: 2010-06-02T18:16:41Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140003
.
Reference: [1] L. Bakule: Decentralized control of time-delayed uncertain symmetric composite systems.In: Proc. 4th International Conference on Control and Automation, Montreal 2003, pp. 399–403.
Reference: [2] L. Bakule: Control of time-delayed uncertain symmetrically coupled systems.In: Proc. 6th IASTED Internat. Conference Intelligent Systems and Control, Acta Press, Honolulu 2004, pp. 156–160.
Reference: [3] L. Bakule: Complexity-reduced guaranteed cost control design for delayed uncertain symmetrically connected systems.In: Proc. American Control Conference, Portland 2005, pp. 2590–2595.
Reference: [4] L. Bakule: Resilient stabilization of uncertain state-delayed symmetric composite systems.In: Proc. 25th IASTED International Conference on Modelling, Identification, and Control, Acta Press, Lanzarote 2006, pp. 149–154.
Reference: [5] L. Bakule: Non-fragile controllers for a class of time-delay nonlinear systems.In: Prepr. 11th IFAC/IFORS/IMACS Symposium on Large Scale Systems: Theory and Applications, Gdansk 2007. Zbl 1158.93302
Reference: [6] L. Bakule and J. Lunze: Decentralized design of feedback control for large-scale systems.Kybernetika 24 (1988), 1–100. MR 0975855
Reference: [7] L. Bakule and J. Rodellar: Decentralized control design of uncertain nominally linear symmetric composite systems.IEE Proc. Control Theory Appl. 143 (1996), 630–536.
Reference: [8] L. Bakule and M. De la Sen: Decentralized stabilization of uncertain symmetric composite systems.In: Proc. 9th IFAC/IFORS/IMACS Symposium on Large Scale Systems: Theory and Applications, Patras 1998, vol. 1, pp. 265–270.
Reference: [9] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory.SIAM, Philadelphia 1994. MR 1284712
Reference: [10] J. R. Corrado and W. M. Haddad: Static output feedback controllers for systems with parametric uncertainty and controller gain variations.In: Proc. American Control Conference, San Diego 1999, pp. 915–919.
Reference: [11] P. Dorado: Non-fragile controller design: an overview.In: Proc. American Control Conference, Philadelphia 1998, pp. 2829–2831.
Reference: [12] W. Ebert: Towards delta domain in predictive control – An application to the space crystal furnace TITUS.In: Proc. 1999 Internat. Conference on Control Applications, Banff 1999, pp. 391–396.
Reference: [13] M. El-Sayed and P. S. Krishnaprasad: Homogeneous interconnected systems: An example.IEEE Trans. Automat. Control 26 (1981), 894–901.
Reference: [14] M. Hovd and S. Skogestad: Control of symetrically interconnected plants.Automatica 30 (1994), 957–973. MR 1283439
Reference: [15] S. Huang, J. Lam, G. H. Yang, and S. Zhang: Fault tolerant decentralized $H_{\infty }$ control for symmetric composite systems.IEEE Trans. Automat. Control 44 (1999), 2108–2114. MR 1735725
Reference: [16] R. S. H. Istepanian and J. F. Whidborne (eds.): Digital Controller Implementation and Fragility.Springer-Verlag, Berlin 2001.
Reference: [17] L. H. Keel and S. P. Bhattacharyya: Robust, fragile, or optimal? IEEE Trans.Automat. Control 42 (1997), 1098–1105. MR 1469070
Reference: [18] F. Liu, P. Jiang, H. Su, and J. Chu: Robust ${H}_{\infty }$ control for time-delay systems with additive controller uncertainty.In: Proc. 4th World Congress on Intelligent Control and Automation, 2002, pp. 1718–1722.
Reference: [19] F. Liu and S. Y. Zhang: Robust decentralized output feedback control of similar composite systems with uncertainties unknown.In: Proc. American Control Conference, San Diego 1999, vol. 6, pp. 3838–3842.
Reference: [20] M. S. Mahmoud: Resilient Control of Uncertain Dynamical Systems.Springer Verlag, Berlin 2004. Zbl 1103.93003, MR 2073581
Reference: [21] J. A. Marshall, M. E. Broucke, and B. A. Francis: Formations of vehicles in cyclic pursuit.IEEE Trans. Automat. Control 49 (2004), 1963–1974. MR 2100774
Reference: [22] D. Peaucelle, D. Arzelier, and Ch. Farges: LMI results for resilient state-feedback with ${H}_{\infty }$ performance.In: Proc. 43rd IEEE Conference on Decision and Control, Paradise 2004, pp. 400–405.
Reference: [23] S. S. Stanković, D. M. Stipanović, and D. D. Šiljak: Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems.Automatica 43 (2007), 861–867.
Reference: [24] D. D. Šiljak and D. M. Stipanović: Robust stabilization of nonlinear systems: The LMI approach.Math. Problems Engrg. 6 (2000), 461–493.
Reference: [25] R. H. C. Takahashi, D. A. Dutra, R. M. Palhares, and P. L. D. Peres: On robust non-fragile static state-feedback controller synthesis.In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 4909–4914.
Reference: [26] A. Trächtler: Entwurf strukturbeschränkter Rückführungen an symmetrischen Systemen.Automatisierungstechnik 39 (1991), 239–244.
Reference: [27] M. Vukobratović and D. M. Stokić: Control of Manipulator Robots: Theory and Applications.Springer-Verlag, Berlin 1982.
Reference: [28] Y. H. Wang and S. Y. Zhang: Robust control for nonlinear similar composite systems with uncertain parameters.IEE Proc. Control Theory Appl. 147 (2000), 80–84.
Reference: [29] L. Xiaoping: Output regulation of strongly coupled symmetric composite systems.Automatica 28 (1992), 1037–1041. Zbl 0766.93027, MR 1179706
Reference: [30] G.-H. Yang and J. L. Wang: Non-fragile ${H}_{\infty }$ control for linear systems with multiplicative controller gain variations.Automatica 37 (2001), 727–737. MR 1832962
Reference: [31] G. H. Yang and S. Y. Zhang: Stabilizing controllers for uncertain symmetric composite systems.Automatica 31 (1995), 337–340. MR 1315147
Reference: [32] G. H. Yang and S. Y. Zhang: Robust stability and stabilization of uncertain composite systems with circulant structures.In: Proc. 13th Triennial World Congress, San Francisco 1996, 5a-02 6, pp. 67–72. MR 1423662
Reference: [33] J.-S. Yee, G.-H. Wang, and J. L. Wang: Non-fragile guaranteed cost control for discrete-time uncertain linear systems.Internat. J. Systems Sci. 63 (2001), 7, 845–853. MR 1959615
.

Files

Files Size Format View
Kybernetika_45-2009-1_3.pdf 960.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo