Previous |  Up |  Next

Article

Title: The stability of parameter estimation of fuzzy variables (English)
Author: Hong, Dug Hun
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 3
Year: 2009
Pages: 529-540
Summary lang: English
.
Category: math
.
Summary: Recently, the parameter estimations for normal fuzzy variables in the Nahmias' sense was studied by Cai [4]. These estimates were also studied for general $T$-related, but not necessarily normal fuzzy variables by Hong [10] In this paper, we report on some properties of estimators that would appear to be desirable, including unbiasedness. We also consider asymptotic or “large-sample” properties of a particular type of estimator. (English)
Keyword: duzzy variables
Keyword: parameter estimation
Keyword: consistency
Keyword: MSE
Keyword: stability of estimation
MSC: 03E72
MSC: 28E10
MSC: 62F86
MSC: 62L12
idZBL: Zbl 1173.28306
idMR: MR2543138
.
Date available: 2010-06-02T18:47:39Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140008
.
Reference: [1] R. Badard: The law of large numbers for fuzzy processes and the estimation problem.Inform. Sci. 28 (1982), 161–178. Zbl 0588.60004, MR 0717299
Reference: [2] K. Y. Cai, C. Y. Wen, and M. L. Zhang: Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context.Fuzzy Sets and Systems 42 (1991), 145–172. MR 1117821
Reference: [3] K. Y. Cai, C. Y. Wen, and M. L. Zhang: Possibistic reliability behavior of typical systems with two types of failures.Fuzzy Sets and Systems 43 (1991), 17–32. MR 1127988
Reference: [4] K. Y. Cai: Parameter estimations of normal fuzzy variables.Fuzzy Sets and Systems 55 (1993), 179–185. MR 1215138
Reference: [5] S. Chanas and M. Nowakowski: Single value simulation of fuzzy variable.Fuzzy Sets and Systems 25 (1988), 43–59. MR 0918008
Reference: [6] H. Dishkant: About membership functions estimation.Fuzzy Sets and Systems 5 (1981), 141–147. Zbl 0469.03038, MR 0615657
Reference: [7] D. Dubois and H. Prade: Additions of interactive fuzzy numbers.IEEE Trans. Automat. Control 26 (1981), 926–936. MR 0635852
Reference: [8] D. Dubois and H. Prade: Fuzzy Sets and Systems: Theory and Applications.Academic Press, New York 1980. MR 0589341
Reference: [9] S. Heilpern: The expected value of a fuzzy number.Fuzzy Sets and Systems 47 (1992), 81–86. Zbl 0755.60004, MR 1170003
Reference: [10] D. H. Hong: Parameter estimations of mutually $T$-related fuzzy variables.Fuzzy Sets and Systems 123 (2001), 63–71. Zbl 0984.62012, MR 1848795
Reference: [11] D. H. Hong: A note on $t$-norm-based addition of fuzzy intervals.Fuzzy Sets and Systems 75 (1995), 73–76. Zbl 0947.26024, MR 1351592
Reference: [12] D. H. Hong and Hoyong Kim: A note to sum of fuzzy variables.Fuzzy Sets and Systems 93 (1998), 121–124. MR 1601517
Reference: [13] D. H. Hong and P. I. Ro: The law of large numbers for fuzzy numbers with unbounded supports.Fuzzy Sets and Systems 116 (2000), 269–274. MR 1788398
Reference: [14] D. H. Hong and C. Hwang: $T$-sum bound of $LR$-fuzzy numbers.Fuzzy Sets and Systems 91 (1997), 239–252. MR 1480049
Reference: [15] D. H. Hong and J. Lee: On the law of large numbers for mutually $T$-related $L$-$R$ fuzzy numbers.Fuzzy Sets and Systems 116 (2000), 263–269. MR 1788397
Reference: [16] A. Marková: $T$-sum of $LR$-fuzzy numbers.Fuzzy Sets and Systems 85 (1996), 379–384. MR 1428314
Reference: [17] R. Mesiar: Triangular norm-based additions of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 231–237. MR 1480048
Reference: [18] S. Nahmias: Fuzzy variables.Fuzzy Sets and Systems 1 (1978), 97–110. Zbl 0383.03038, MR 0498158
Reference: [19] H. T. Nguyen: A note on the extension principle for fuzzy sets.J. Math. Anal. Appl. 64 (1978), 369–380. Zbl 0377.04004, MR 0480044
Reference: [20] M. B. Rao and A. Rashed: Some comments on fuzzy variables.Fuzzy Sets and Systems 6 (1981), 285–292. MR 0635349
Reference: [21] B. Schweizer and A. Sklar: Probabilistic Metric Space.North-Holland, New York 1983. MR 0790314
Reference: [22] P. Z. Wang: Fuzzy Set Theory and Its Applications.Shanghai Publishing House of Science and Technology, Shanghai 1983. MR 0745623
Reference: [23] L. A. Zadeh: Fuzzy Sets as a basis for a theory of possibility.Fuzzy Sets and Systems 1 (1978), 3–28. Zbl 0377.04002, MR 0480045
.

Files

Files Size Format View
Kybernetika_45-2009-3_11.pdf 837.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo