Previous |  Up |  Next

Article

Title: Semiparametric estimation of the parameters of multivariate copulas (English)
Author: Liebscher, Eckhard
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 6
Year: 2009
Pages: 972-991
Summary lang: English
.
Category: math
.
Summary: In the paper we investigate properties of maximum pseudo-likelihood estimators for the copula density and minimum distance estimators for the copula. We derive statements on the consistency and the asymptotic normality of the estimators for the parameters. (English)
Keyword: multivariate density estimation
Keyword: copula
Keyword: maximum likelihood estimators
Keyword: minimum distance estimators
MSC: 62G07
MSC: 62G20
MSC: 62H12
idZBL: Zbl 1186.62076
idMR: MR2650077
.
Date available: 2010-06-02T19:28:48Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140022
.
Reference: [1] X. Chen and Y. Fan: Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection.Canad. J. Statist. 33 (2005), 389–414. MR 2193982
Reference: [2] X. Chen and Y. Fan: Estimation of copula-based semiparametric time series models.J. Econometrics 130 (2006), 307–335. MR 2211797
Reference: [3] X. Chen and Y. Fan, and V. Tsyrennikov: Efficient estimation of semiparametric multivariate copula models.J. Amer. Statist. Assoc. 101 (2006), 1228–1240. MR 2328309
Reference: [4] J.-D. Fermanian: Goodness-of-fit tests for copulas.J. Multivariate Anal. 95 (2005), 119–152. Zbl 1095.62052, MR 2164126
Reference: [5] C. Genest, K. Ghoudi, and L.-P. Rivest: A semiparametric estimation procedure of dependence parameters in multivariate families of distributions.Biometrika 82 (1995), 543–552. MR 1366280
Reference: [6] C. Genest, J.-F. Quessy, and B. Rémillard: Goodness-of-fit procedures for copula models based on the probability integral transformation.Scand. J. Statist. 33 (2006), 337–366. MR 2279646
Reference: [7] C. Genest and L.-P. Rivest: Statistical inference procedures for bivariate Archimedian copulas.J. Amer. Statist. Assoc. 88 (1993), 1034–1043. MR 1242947
Reference: [8] C. Genest and B. J. M. Werker: Conditions for the asymptotic efficiency of an omnibus estimator of dependence estimators in copula models.In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras et al., eds.), Kluwer, Dordrecht 2000, pp. 103–112. MR 2058984
Reference: [9] I. Gijbels and J. Mielniczuk: Estimating the density of a copula function.Comm. Statist. – Theory Methods 19 (1990), 445–464. MR 1067582
Reference: [10] P. Hall and N. Neumayer: Estimating a bivariate density when there are extra data on one or both components.Working Paper, 2006.
Reference: [11] C. Hess: Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator.Ann. Statist. 24 (1996), 1298–1315. Zbl 0862.62029, MR 1401851
Reference: [12] H. Joe: Multivariate Models and Dependence Concepts.Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613
Reference: [13] H. Joe: Asymptotic efficiency of the two-stage estimation method for copula-based models.J. Multivariate Anal. 94 (2005), 401–419. Zbl 1066.62061, MR 2167922
Reference: [14] P. Lachout, E. Liebscher, and S. Vogel: Strong convergence of estimators as $\varepsilon _{n}$-minimisers of optimisation problems.Ann. Inst. Statist. Math. 57 (2005), 291–313. MR 2160652
Reference: [15] E. Liebscher: Semiparametric density estimators using copulas.Comm. Statist. – Theory Methods 34 (2005), 59–71. Zbl 1066.62046, MR 2162520
Reference: [16] E. Liebscher: Construction of asymmetric multivariate copulas.J. Multivariate Anal. 99 (2008), 2234–2250. Zbl 1151.62043, MR 2463386
Reference: [17] R. B. Nelsen: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999. Zbl 1152.62030, MR 1653203
Reference: [18] D. Oakes: Multivariate Survival distributions.J. Nonparametric Statist. 3 (1994), 343–354. MR 1291555
Reference: [19] R. Serfling: Approximation Theorems of Mathematical Statistics.Wiley, New York 1980. Zbl 1001.62005, MR 0595165
Reference: [20] J. H. Shih and T. A. Louis: Inferences on the association parameter in copula models for bivariate survival data.Biometrics 55 (1995), 1384–1399. MR 1381050
Reference: [21] A. Suzukawa, H. Imai, and Y. Sato: Kullback–Leibler information consistent estimation for censored data.Ann. Inst. Statist. Math. 53 (2001), 262–276. MR 1841135
Reference: [22] H. Tsukahara: Semiparametric estimation in copula models.Canad. J. Statist. 33 (2005), 357–375. Zbl 1077.62022, MR 2193980
Reference: [23] W. Wang and M. T. Wells: Model selection and semiparametric inference for bivariate failure-time data.J. Amer. Statist. Assoc. 95 (2000), 62–76. MR 1803141
.

Files

Files Size Format View
Kybernetika_45-2009-6_7.pdf 978.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo