Previous |  Up |  Next

Article

Title: On characterization of the solution set in case of generalized semiflow (English)
Author: Beran, Zdeněk
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 5
Year: 2009
Pages: 701-715
Summary lang: English
.
Category: math
.
Summary: In the paper, a possible characterization of a chaotic behavior for the generalized semiflows in finite time is presented. As a main result, it is proven that under specific conditions there is at least one trajectory of generalized semiflow, which lies inside an arbitrary covering of the solution set. The trajectory mutually connects each subset of the covering. A connection with symbolic dynamical systems is mentioned and a possible numerical method of analysis of dynamical behavior is outlined. (English)
Keyword: generalized semiflow
Keyword: chaos
Keyword: symbolic dynamics
MSC: 34A60
MSC: 37N25
MSC: 93C10
idZBL: Zbl 1190.93036
idMR: MR2599107
.
Date available: 2010-06-02T19:08:39Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140036
.
Reference: [1] J.-P. Aubin and A. Cellina: Differential inclusions, set-valued maps and viability theory.(Grundlagen Math. Wiss. 264.) Springer–Verlag, Berlin 1984. MR 0755330
Reference: [2] J. M. Ball: Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations.Nonlinear Sci. 7 (1997), 475–502. Erratum, ibid 8 (1998), 233. Zbl 0958.35101, MR 1462276
Reference: [3] N. P. Bhatia and G. P. Szegö: Stability Theory of Dynamical Systems.Springer-Verlag, Berlin 1970. MR 0289890
Reference: [4] G. Chen and T. Ueta: Yet another chaotic attractor.Internat. J. Bifurcation Chaos 9 (1999), 1465–1466. MR 1729683
Reference: [5] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form.Chaos, Solitons and Fractals 26 (2005), 1271–1276. MR 2149315
Reference: [6] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form of chaotic systems.Internat. J. Bifurcation Chaos, in press.
Reference: [7] S. Čelikovský and A. Vaněček: Bilinear systems and chaos.Kybernetika 30 (1994), 403–424.
Reference: [8] J. H. Curry: A generalized Lorenz system.Commun. Math. Phys. 60, (1978), 193–204. Zbl 0387.76052, MR 0495037
Reference: [9] S. Day: A Rigorous Numerical Method in Infinite Dimensions.PhD Thesis, Georgia Institute of Technology 2003. MR 2620074
Reference: [10] S. Day, Y. Hiraoka, K. Mischaikow, and T. Ogawa: Rigorous numerics for global dynamics: A study of the Swift–Hohenberg equation.SIAM J. Appl. Dynamical Systems 1 (2005), 4, 1–31. MR 2136516
Reference: [11] S. Day, J.-P. Lessard, and K. Mischaikow: Validated continuation for equilibria of PDFs.to appear in SIAM J. Numer. Anal. 2007. MR 2338393
Reference: [12] : .L. Dieci and T. Eirola. Numerical Dynamical Systems. School of Mathematics, Georgia Institute of Technology, Institute of Mathematics, Helsinky University of Technology 2005.
Reference: [13] J. Guckenheimer: A strange, strange attractor.In: The Hopf Bifurcation and Applications (Applied Math. Sciences 19, J. Marsden and J. McCracken, eds.), Springer–Verlag, Berlin 1976, pp. 368–381.
Reference: [14] T. Kaczynski, K. Mischaikow, and M. Mrozek: Computational Homology.(Appl. Math. Sci. Series 157.) Springer–Verlag, New York 2004. MR 2028588
Reference: [15] A. Katok and B. Hasselbatt: Introduction to the Modern Theory of Dynamic Systems.Cambridge University Press, Cambridge 1997.
Reference: [16] J.-P. Lessard: Validated Continuation for Infinite Dimensional Problems.PhD Thesis, Georgia Institute of Technology 2007. MR 2626583
Reference: [17] E. N. Lorenz: Deterministic nonperiodic flow.J. Atmospheric Sci. 20, (1963), 130–141.
Reference: [18] J. Lü and G. Chen: A new chaotic attractor coined.Internat. J. Bifurcation Chaos 3 (2002), 12, 659–661. MR 1894886
Reference: [19] J. Lü, G. Chen, D. Cheng, and S. Čelikovský: Bridge the gap between the Lorenz system and the Chen system: Internat.J. Bifurcation Chaos 12 (2002), 12, 2917–2926. MR 1956411
Reference: [20] J. Lü, G. Chen, and D. Cheng: A new chaotic system and beyond: the generalized Lorenz-like system.Internat. J. Bifurcation Chaos 5 (2004), 12, 1507–1537. MR 2072347
Reference: [21] V. S. Melnik and J. Valero: On attractors of multivalued semi-flows and differential inclusions.Set-Valued Analysis 6 (1998), 83–111. MR 1631081
Reference: [22] K. Mischaikow: Conley index theory: A brief introduction.In: Conley Index Theory, Banach Center Publication 1999. Zbl 0946.37010, MR 1675403
Reference: [23] K. Mischaikow and M. Mrozek: Conley index, mathematical computation.In: Handbook of Dynamical Systems, Berlin, Elsevier 2002. MR 1901060
Reference: [24] K. Mischaikow and M. Mrozek: Chaos in Lorenz equations: A computer assisted proof.Bull. Amer. Math. Soc. 32 (1995), 66–72. MR 1276767
Reference: [25] K. Mischaikow and M. Mrozek: Chaos in Lorenz equations: A computer assisted proof.Part II: Details. Math. Computation 67 (1998), 1023–1046. MR 1459392
Reference: [26] K. Mischaikow, M. Mrozek, and A. Szymczak: Chaos in Lorenz Equations: A Computer Assisted Proof.Part III: Classical Parameter Values, Research supported by NSF 9805584 and by KBN, Grant 2 P03A 029 12.
Reference: [27] H. Poincaré: Les Méthodes Nouvelles de la Mécanique Céleste.Gauthier-Villars 1899. English translation: New Methods of Celestial Mechanics by D. Goroff, AIP Press.
Reference: [28] D. Ruelle and F. Takens: On the nature of the turbulence.Commun. Math. Phys. 20 (1963), 167–192. MR 0284067
Reference: [29] J. C. Sprott: Some simple chaotic flows.Phys. Rev. E50 (1994), R647–R650. MR 1381868
Reference: [30] J. C. Sprott: Strange Attractors: Creating Patterns in Chaos.M&T Books, New York 1993.
Reference: [31] A. M. Stuart and A. R. Humphries: Dynamical Systems and Numerical Analysis.Cambridge Univ. Press, Cambridge 1996. MR 1402909
Reference: [32] R. Temam: Infinite-Dimensional Dynamical Systems.Springer, Berlin 1993. Zbl 0871.35001, MR 1319878
Reference: [33] R. F. Williams: The structure of Lorenz attractors.Publ. Math. de l’I.H.É.S 50 (1979), 73–99. Zbl 0484.58021, MR 0556583
Reference: [34] S. Wong: Newton’s method and symbolic dynamics.Proc. Amer. Math. Soc. 2 (1984), 91, 245–253. Zbl 0554.65038, MR 0740179
.

Files

Files Size Format View
Kybernetika_45-2009-5_2.pdf 1.019Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo