Previous |  Up |  Next

Article

Title: Adaptive control of uncertain nonholonomic systems in finite time (English)
Author: Wang, Jiankui
Author: Zhang, Guoshan
Author: Li, Hongyi
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 5
Year: 2009
Pages: 809-824
Summary lang: English
.
Category: math
.
Summary: In this paper, the finite-time stabilization problem of chained form systems with parametric uncertainties is investigated. A novel switching control strategy is proposed for adaptive finite-time control design with the help of Lyapunov-based method and time-rescaling technique. With the proposed control law, the uncertain closed-loop system under consideration is finite-time stable within a given settling time. An illustrative example is also given to show the effectiveness of the proposed controller. (English)
Keyword: finite-time convergence
Keyword: parameter uncertainty
Keyword: adaptive control
Keyword: nonholonomic systems
MSC: 34H05
MSC: 93B40
MSC: 93C15
MSC: 93C40
MSC: 93C41
MSC: 93D15
MSC: 93D21
idZBL: Zbl 1190.93086
idMR: MR2599114
.
Date available: 2010-06-02T19:16:25Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140039
.
Reference: [1] E. F. Beckenbach and R. Bellman: Inequalities.Springer–Verlag, Berlin 1971. MR 0192009
Reference: [2] S. Bhat and D. Bernstein: Continuous finite-time stabilization of the translational and rotational double integrators.IEEE Trans. Automat. Control 43 (1998), 678–682. MR 1618028
Reference: [3] A. de Luca and M. D. di Benedetto: Control of nonholonomic systems via dynamic compensation.Kybernetika 29 (1993), 593–608. MR 1264889
Reference: [4] S. Ge, Z. Wang, and T. Lee: Adaptive stablization of uncertain nonholonomic systems by state and output feedback.Automatica 39 (2003), 1451–1460. MR 2141690
Reference: [5] J. Hespanha, S. Liberzon, and A. Morse: Logic-based switching control of a nonholonomic system with parametric modeling uncertainty.Systems Control Lett. 38 (1999), 167–177. MR 1759354
Reference: [6] Y. Hong: Finite-time stabilization and stabilizability of a class of controllable systems.Systems Control Lett. 46 (2002), 231–236. Zbl 0994.93049, MR 2010240
Reference: [7] Y. Hong, J. Huang, and Y. Xu: On an output feedback finite time stabilization problem.IEEE Trans. Automat. Control 46 (2001), 305–309. MR 1814578
Reference: [8] Y. Hong, J. Wang, and D. Cheng: Adaptive finite-time control of nonlinear systems with parametric uncertainty.IEEE Trans. Automat. Control 51 (2006), 858–862. MR 2232614
Reference: [9] Y. Hong, J. Wang, and Z. Xi: Stabilization of Uncertain Chained Form Systems within Finite Settling Time.IEEE Trans. Automat. Control 50 (2005), 1379–1384. MR 2164439
Reference: [10] Z. P. Jiang: Robust exponential regulation of nonholonomic systems with uncertainties.Automatica 36 (2000), 189–209. Zbl 0952.93057, MR 1827775
Reference: [11] Z. P. Jiang and J. B. Pomet: Global stabilization of parametric chained systems by time-varying dynamic feedback.Internat. J. Adapt. Control Signal Process. 10 (1996), 47–59. MR 1377116
Reference: [12] M. Krstić, I. Kanellakopoulos and P. V. Kokotović: Nonlinear and Adaptive Control Systems Design.Wiley, New York 1995.
Reference: [13] J. Li and C. Qian: Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems.IEEE Trans. Automat. Control 51 (2006), 879–884. MR 2232618
Reference: [14] S. Li and Y.-P. Tian: Finite-time stability of cascaded time-varying systems.Internat. J. Control 80 (2007), 646–657. MR 2304124
Reference: [15] Y. Wang, D. Cheng, Y. Hong, and H. Qin: Finite-time stabilizing excitation control of a synchronous generator.Internat. J. Systems Sci. 33 (2002), 13–22. MR 1900026
Reference: [16] Z. Xi, G. Feng, Z. Jiang, and D. Cheng: A switching algorithm for global exponential stabilization of uncertain chained systems.IEEE Trans. Automat. Control 48 (2003), 1793–1798. MR 2021431
.

Files

Files Size Format View
Kybernetika_45-2009-5_9.pdf 978.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo