Previous |  Up |  Next

Article

Title: Optimal quantization for the one–dimensional uniform distribution with Rényi-$\alpha$-entropy constraints (English)
Author: Kreitmeier, Wolfgang
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 1
Year: 2010
Pages: 96-113
Summary lang: English
.
Category: math
.
Summary: We establish the optimal quantization problem for probabilities under constrained Rényi-$\alpha$-entropy of the quantizers. We determine the optimal quantizers and the optimal quantization error of one-dimensional uniform distributions including the known special cases $\alpha = 0$ (restricted codebook size) and $\alpha = 1$ (restricted Shannon entropy). (English)
Keyword: optimal quantization
Keyword: uniform distribution
Keyword: Rényi-$\alpha $-entropy
MSC: 60E99
MSC: 62B10
MSC: 62H30
MSC: 94A17
MSC: 94A29
idZBL: Zbl 1187.94018
idMR: MR2666897
.
Date available: 2010-06-02T19:48:00Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140047
.
Reference: [1] J. Aczél and Z. Daróczy: On Measures of Information and Their Characterizations.(Mathematics in Science and Engineering Vol. 115.) Academic Press, London 1975. MR 0689178
Reference: [2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty: Nonlinear Programming, Theory and Algorithms.Wiley, New York 1993. MR 2218478
Reference: [3] C. Beck and F. Schlögl: Thermodynamics of Chaotic Systems.Cambridge University Press, Cambridge 1993. MR 1237638
Reference: [4] M. Behara: Additive and Nonadditive Measures of Entropy.Wiley, New Delhi 1990. Zbl 0752.94005, MR 1106848
Reference: [5] J. C. Fort and G. Pagès: Asymptotics of optimal quantizers for some scalar distributions.J. Comput. Appl. Math. 146 (2002), 253–275. MR 1925959
Reference: [6] A. Gersho and R. M. Gray: Vector Quantization and Signal Compression.Kluwer, Boston 1992.
Reference: [7] S. Graf and H. Luschgy: The quantization of the Cantor distribution.Math. Nachr. 183 (1997), 113–133. MR 1434978
Reference: [8] S. Graf and H. Luschgy: Foundations of Quantization for Probability Distributions.(Lecture Notes in Computer Science 1730.) Springer, Berlin 2000. MR 1764176
Reference: [9] R. M. Gray and D. Neuhoff: Quantization.IEEE Trans. Inform. Theory 44 (1998), 2325–2383. MR 1658787
Reference: [10] M. Grendar: Entropy and effective support size.Entropy 8 (2006), 169–174. Zbl 1135.94316, MR 2276249
Reference: [11] A. György and T. Linder: Optimal entropy-constrained scalar quantization of a uniform source.IEEE Trans. Inform. Theory 46 (2000), 2704–2711. MR 1806836
Reference: [12] A. György and T. Linder: On the structure of optimal entropy-constrained scalar quantizers.IEEE Trans. Inform. Theory 48 (2002), 416–427. MR 1891255
Reference: [13] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities.Second edition. Cambridge University Press, Cambridge 1959.
Reference: [14] P. Harremoës and F. Topsøe: Inequalities between entropy and index of coincidence derived from information diagrams.IEEE Trans. Inform. Theory 47 (2001), 2944–2960. MR 1872852
Reference: [15] M. Kesseböhmer and S. Zhu: Stability of quantization dimension and quantization for homogeneous Cantor measure.Math. Nachr. 280 (2007), 866–881. MR 2326060
Reference: [16] W. Kreitmeier: Optimal quantization for dyadic homogeneous Cantor distributions.Math. Nachr. 281 (2008), 1307–1327. MR 2442708
Reference: [17] F. Liese, D. Morales, and I. Vajda: Asymptotically sufficient partitions and quantizations.IEEE Trans. Inform. Theory 52 (2006), 5599–5606. MR 2300722
Reference: [18] K. Pötzelberger and H. Strasser: Clustering and quantization by MSP-partitions.Statist. Decisions 19 (2001), 331–371. MR 1884124
.

Files

Files Size Format View
Kybernetika_46-2010-1_7.pdf 620.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo