Previous |  Up |  Next

Article

Title: Control of a class of chaotic systems by a stochastic delay method (English)
Author: Zhang, Lan
Author: Zhang, Chengjian
Author: Zhao, Dongming
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 1
Year: 2010
Pages: 38-49
Summary lang: English
.
Category: math
.
Summary: A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions. (English)
Keyword: random dynamical system
Keyword: unified chaotic system
Keyword: stochastic delay differential equations
Keyword: multiplicative noise
Keyword: maximal Lyapunov exponent
MSC: 34H15
MSC: 34K50
MSC: 60H10
MSC: 60H30
MSC: 93C23
MSC: 93D15
MSC: 93E15
idZBL: Zbl 1201.60061
idMR: MR2666893
.
Date available: 2010-06-02T19:40:33Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140052
.
Reference: [1] S. H.Chen, J. Liu, and J. A. Lu: Tracking control and synchronization of chaotic system based upon sampled-data feedback.Chinese Phys. 11(2002), 233–237.
Reference: [2] E.Ott, C.Grebogi and J.A.Yorke: Controlling chaos.Phys. Rev. Lett. 64 (1990), 1196–1199. MR 1041523
Reference: [3] L. M. Pecora and T. L. Carrol: Synchronization in chaotic systems.Phys. Rev. Lett. 64 (1990), 8, 821–824. MR 1038263
Reference: [4] B. R. Andrievskii and A. L. Fradkov: Control of chaos: Methods and Applications.I. Methods. Autom. Telemekh. 5 (2003), 3–45. MR 2093398
Reference: [5] B. R. Andrievskii and A. L. Fradkov: Control of chaos: Methods and Applications.II. Appl. Autom. Telemekh. 4 (2004), 3–34. MR 2095138
Reference: [6] L. Arnold: Random Dynamical Systems.Springer-Verlag, Berlin 1998. Chap. 1, pp. 5–6. Zbl 1092.34028, MR 1374107
Reference: [7] C. T. H. Baker, J. M. Ford, and N. J. Ford: Bifurcation in approximate solutions of stochastic delay differential equations.Internat J. Bifurcation and Chaos 14(2004), 9, 2999–3021. MR 2099159
Reference: [8] H. Crauel and F. Flandoli: Additive noise destroys a pitchfork bifurcation.J. Dynam. Diff. Equations 10 (1998), 2, 259–274. MR 1623013
Reference: [9] J. K. Hale: Theory of functional differential equations.Appl. Math. Sci., Vol.3, Springer-Verlag, Berlin 1977, Chap. 1, pp. 17–18. Zbl 1092.34500, MR 0390425
Reference: [10] D. M. Li, J. A. Lu, X. Q. Wu, and G. R. Chen: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system.J. Math. Anal. Appl. 323 (2006), 844–853. MR 2260147
Reference: [11] J. H. Lü and G. R. Chen: A new chaotic attractor conined.Internat. J. Bifurcation and Chaos 12(2002), 3, 659–661. MR 1894886
Reference: [12] X. R. Mao: Stochastic Differential Equations and Their Applications.Horwood Publ. 1997, Chap. 5, pp. 179–183. Zbl 0892.60057
Reference: [13] J. H. Lü, G. R. Chen, D. Z. Chen, and S. Čelikovský: Bridge the gap between the Lorenz system and the Chen system.Internat. J. Bifurcation and Chaos 12 (2002), 12, 2917–2926. MR 1956411
Reference: [14] V. I. Oseledets: A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems.Trans. Moscow Math. Soc. 19 (1968), 197–231. Zbl 0236.93034
Reference: [15] C. Zhang, W. Lin, J. Zhou: Complete and generalized synchronization in a class of noise perturbed chaotic systems.Chaos 17 (2007), 023106-1. MR 2340609
Reference: [16] L. Zhang and C. J. Zhang: Control a class of chaotic systems by a simple stochastic method.Dynamics of Continuous, Discrete and Impulsive Systems, Series B, Special Issue on Software Engineering and Complex Networks 14 (2007), S6, 210–214. MR 2378808
Reference: [17] W. Q. Zhu and H. L. Huang: Stochastic stability of quasi-non-integrable Hamiltonian systems.J. Sound and Vibration 218 (1998), 769–789.
.

Files

Files Size Format View
Kybernetika_46-2010-1_3.pdf 1.401Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo