Previous |  Up |  Next

Article

Title: Multigenerative grammar systems and matrix grammars (English)
Author: Lukáš, Roman
Author: Meduna, Alexander
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 1
Year: 2010
Pages: 68-82
Summary lang: English
.
Category: math
.
Summary: Multigenerative grammar systems are based on cooperating context-free grammatical components that simultaneously generate their strings in a rule-controlled or nonterminal-controlled rewriting way, and after this simultaneous generation is completed, all the generated terminal strings are combined together by some common string operations, such as concatenation, and placed into the generated languages of these systems. The present paper proves that these systems are equivalent with the matrix grammars. In addition, we demonstrate that these systems with any number of grammatical components can be transformed to equivalent two-component versions of these systems. The paper points out that if these systems work in the leftmost rewriting way, they are more powerful than the systems working in a general way. (English)
Keyword: multigenerative grammar systems
Keyword: simultaneously controlled derivations
Keyword: matrix grammars
MSC: 68Q05
MSC: 68Q45
idZBL: Zbl 1209.68289
idMR: MR2666895
.
Date available: 2010-06-02T19:45:23Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140054
.
Reference: [1] E. Csuhaj-Varju, J. Dassow, J. Kelemen, and Ch. Păun: Grammar Systems: A Grammatical Approach to Distribution and Cooperation.Gordon and Breach, London 1994. MR 1475215
Reference: [2] E. Csuhaj-Varju and G. Vaszil: On context-free parallel communicating grammar systems: Synchronization, communication, and normal forms.Theoret. Comput. Sci. 255 (2001), 511–538. MR 1819088
Reference: [3] E. Csuhaj-Varju and G. Vaszil: Parallel communicating grammar systems with incomplete information communication.Develop. Language Theory (2001), 381–392. MR 1961495
Reference: [4] J. Dassow: On cooperating distributed grammar systems with competence based start and stop conditions.Fund. Inform. 76 (2007), 293–304. Zbl 1112.68074, MR 2311441
Reference: [5] J. Dassow and G. Păun: Regulated Rewriting in Formal Language Theory.Springer-Verlag, New York 1989. MR 1067543
Reference: [6] J. Dassow, G. Păun, and G. Rozenberg: Grammar systems.In: Handbook of Formal Languages (G. Rozenberg and A. Salomaa, eds.), Springer, Berlin 1997. MR 1470009
Reference: [7] J. Dassow, G. Păun, and A. Salomaa: Grammars with controlled derivations.In: Handbook of Formal Languages (G. Rozenberg and A. Salomaa, eds.), Springer, Berlin (1997). MR 1470008
Reference: [8] H. Fernau: Parallel communicating grammar systems with terminal transmission.Acta Inform. 37 (2001), 511–540. Zbl 0977.68050, MR 1824842
Reference: [9] H. Fernau and M. Holzer: Graph-controlled cooperating distributed grammar systems with singleton components.In: Proc. Third Internat. Workshop on Descriptional Complexity of Automata, Grammars, and Related Structures, Vienna 2001, pp. 79–90. MR 1990453
Reference: [10] J. Gaso and M. Nehez: Stochastic cooperative distributed grammar systems and random graphs.Acta Inform. 39 (2003), 119–140. MR 1963124
Reference: [11] M. A. Harrison: Introduction to Formal Language Theory.Addison-Wesley, London 1978. Zbl 0411.68058, MR 0526397
Reference: [12] A. Meduna: Automata and Languages: Theory and Applications.Springer, London 2000. Zbl 0951.68056, MR 1778364
Reference: [13] A. Meduna: Two-way metalinear PC grammar systems and their descriptional complexity.Acta Cybernet. 16 (2003), 126–137. Zbl 1060.68055, MR 2071407
Reference: [14] A. Meduna and R. Lukas: Multigenerative grammar systems.Schedae Inform. 15 (2006), 175–188.
Reference: [15] G. Păun, A. Salomaa, and S. Vicolov: On the generative capacity of parallel communicating grammar systems.Internat. J. Comput. Math. 45 (1992), 45–59.
Reference: [16] G. Rozenberg and A. Salomaa, eds.: Handbook of Formal Languages.Springer, Berlin 1997.
Reference: [17] A. Salomaa: Formal Languages.Academic Press, New York 1973. Zbl 0895.00028, MR 0438755
Reference: [18] G. Vaszil: On simulating non-returning PC grammar systems with returning systems.Theoret. Comput. Sci. 209 (1998), 1–2, 319–329. Zbl 0915.68106, MR 1647546
.

Files

Files Size Format View
Kybernetika_46-2010-1_5.pdf 474.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo