Previous |  Up |  Next

Article

Title: On reflexive closed set lattices (English)
Author: Yang, Zhongqiang
Author: Zhao, Dongsheng
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 1
Year: 2010
Pages: 143-154
Summary lang: English
.
Category: math
.
Summary: For a topological space $X$, let $S(X)$ denote the set of all closed subsets in $X$, and let $C(X)$ denote the set of all continuous maps $f:X\to X$. A family $\mathcal A\subseteq S(X)$ is called reflexive if there exists ${\mathcal C}\subseteq C(X)$ such that $\mathcal A = \{A\in S(X) : f(A)\subseteq A$ for every $f\in {\mathcal C}\}$. Every reflexive family of closed sets in space $X$ forms a sub complete lattice of the lattice of all closed sets in $X$. In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed sets to be reflexive are obtained. (English)
Keyword: reflexive families of closed sets
Keyword: closed set lattice
Keyword: hyperspace
Keyword: lower semicontinuous set-valued map
MSC: 06B99
MSC: 54B20
MSC: 54C05
MSC: 54C60
idZBL: Zbl 1224.54030
idMR: MR2666086
.
Date available: 2010-05-21T12:39:03Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140081
.
Reference: [1] Engelking R.: General Topology.Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [2] Halmos P.R.: Ten problems in Hilbert space.Bull. Amer. Math. Soc. 76 (1970), 887–933. Zbl 0213.39502, MR 0270173, 10.1090/S0002-9904-1970-12502-2
Reference: [3] Halmos P.R.: Reflexive lattices of subspaces.J. London Math. Soc. 4 (1971), 257–263. Zbl 0231.47003, MR 0288612, 10.1112/jlms/s2-4.2.257
Reference: [4] Harrison K.J., Longstaff W.E.: Automorphic images of commutative subspace lattices.Proc. Amer. Math. Soc. 296 (1986), 217–228. Zbl 0616.46021, MR 0837808, 10.1090/S0002-9947-1986-0837808-1
Reference: [5] Longstaff W.E.: Strongly reflexive subspace lattices.J. London Math. Soc. (2) 11 (1975), 491–498. MR 0394233, 10.1112/jlms/s2-11.4.491
Reference: [6] Longstaff W.E.: On lattices whose every realization on Hilbert space is reflexive.J. London Math. Soc. (2) 37 (1988), 499–508. Zbl 0654.47025, MR 0939125, 10.1112/jlms/s2-37.3.499
Reference: [7] Longstaff W.E., Panaia O.: On the ranks of single elements of reflexive operator algebras.Proc. Amer. Math. Soc. (10) 125 (1997), 2875–2882. Zbl 0883.47024, MR 1402872
Reference: [8] Michael E.: Continuous selections I.Ann. of Math. 63 (1956), 361–382. Zbl 0071.15902, MR 0077107, 10.2307/1969615
Reference: [9] J. van Mill: Infinite-Dimensional Topology, Prerequisites and Introduction.North-Holland Math. Library 43, Elsevier Sci. Publ. B.V., Amsterdam, 1989. Zbl 0663.57001, MR 0977744
Reference: [10] Yang Z., Zhao D.: Reflexive families of closed sets.Fund. Math. 192 (2006), 111–120. Zbl 1111.47007, MR 2283754, 10.4064/fm192-2-2
Reference: [11] Zhao D.: On reflexive subobject lattices and reflexive endomorphism algebras.Comment. Math. Univ. Carolin. 44 (2003), 23–32. Zbl 1101.18303, MR 2045843
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-1_12.pdf 260.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo