Previous |  Up |  Next

Article

Keywords:
$S'$-convolution; weighted distribution spaces; Fourier transform
Summary:
We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region $x_{1}\geq 0$ and $x_{2}\geq 0$.
References:
[1] Alvarez J., Carton-Lebrun C.: Optimal spaces for the $\mathcal{S}'$-convolution with the Marcel Riesz kernels and the $n$-dimensional Hilbert kernel. in Analysis of Divergence: Control and Management of Divergent Processes, W.O. Bray and Č.V. Stanojević (eds.), Birkhäuser, Boston, 1999, pp. 233–248. MR 1731269
[2] Alvarez J., Guzmán-Partida M.: The $\mathcal{S}'$-convolution with singular kernels in the euclidean case and the product domain case. J. Math. Anal. Appl. 270 (2002), 405–434. DOI 10.1016/S0022-247X(02)00078-1 | MR 1915708
[3] Barros-Neto J.: An introduction to the theory of distributions. Marcel Dekker, New York, 1973. MR 0461128 | Zbl 0512.46040
[4] Dierolf P., Voigt J.: Convolution and $\mathcal{S}'$-convolution of distributions. Collect. Math. 29 (1978), 185–196. MR 0565276
[5] Guzmán-Partida M.: On $n$-dimensional Hilbert transform of weighted distributions. Integral Transforms Spec. Funct. 19 (2008), no. 4, 235–248. DOI 10.1080/10652460701754778 | MR 2412225
[6] Hirata Y., Ogata H.: On the exchange formula for distributions. J. Sci. Hiroshima Univ. Ser. A 22 (1958), 147–152. MR 0110014 | Zbl 0088.08603
[7] Mikusiński J.: Criteria of the existence and of the associativity of the product of distributions. Studia Math. 21 (1962), 253–259. MR 0141986
[8] Pandey J.N., Singh O.P.: Characterization of functions with Fourier transform supported on orthants. J. Math. Anal. Appl. 185 (1994), 438–463. DOI 10.1006/jmaa.1994.1260 | MR 1283069 | Zbl 0812.42005
[9] Shiraishi R.: On the definition of convolutions for distributions. J. Sci. Hiroshima Univ. Ser. A 23 (1959), 19–32. MR 0114122 | Zbl 0091.28601
[10] Shiraishi R., Itano M.: On the multiplicative products of distributions. J. Sci. Hiroshima Univ. Ser. A-I Math. 28 (1964), 223–235. MR 0218896 | Zbl 0141.31901
[11] Schwartz L.: Causalité et analyticité. An. Acad. Brasil. Ci. 34 (1962) 13–21. Zbl 0109.33903
[12] Schwartz L.: Théorie des distributions. Hermann, Paris, 1966. MR 0209834 | Zbl 0962.46025
Partner of
EuDML logo