Previous |  Up |  Next

Article

Title: Quasigroup automorphisms and symmetric group characters (English)
Author: Kerby, Brent
Author: Smith, Jonathan D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 279-286
Summary lang: English
.
Category: math
.
Summary: The automorphisms of a quasigroup or Latin square are permutations of the set of entries of the square, and thus belong to conjugacy classes in symmetric groups. These conjugacy classes may be recognized as being annihilated by symmetric group class functions that belong to a $\lambda$-ideal of the special $\lambda$-ring of symmetric group class functions. (English)
Keyword: Latin square
Keyword: quasigroup
Keyword: automorphism
Keyword: $\lambda$-ring
MSC: 05B15
MSC: 05E10
MSC: 19A22
MSC: 20C30
MSC: 20N05
idZBL: Zbl 1211.20063
idMR: MR2682481
.
Date available: 2010-05-21T12:48:51Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140107
.
Reference: [1] Atiyah M.F., Tall D.O.: Group representations, $\lambda$-rings, and the $J$-homomorphism.Topology 8 (1969), 253–297. Zbl 0159.53301, MR 0244387, 10.1016/0040-9383(69)90015-9
Reference: [2] Bryant D., Buchanan M., Wanless I.M.: The spectrum for quasigroups with cyclic automorphisms and additional symmetries.Discrete Math. 309 (2009), 821–833. MR 2502191, 10.1016/j.disc.2008.01.020
Reference: [3] tom Dieck T.: Transformation Groups and Representation Theory.Springer, Berlin, 1979. Zbl 0529.57020, MR 0551743
Reference: [4] Falcón R.M.: Cycle structures of autotopisms of the Latin squares of order up to $11$.arXiv:0709.2973v2 [math.CO], 2009; to appear in Ars Combinatoria.
Reference: [5] Falcón R.M., Martín-Morales J.: Gröbner bases and the number of Latin squares related to autotopisms of order $\leq 7$.J. Symbolic Comput. 42 (2007), 1142–1154. MR 2368076, 10.1016/j.jsc.2007.07.004
Reference: [6] Knutson D.: $\lambda$-rings and the Representation Theory of the Symmetric Group.Springer, Berlin, 1973. Zbl 0272.20008, MR 0364425
Reference: [7] McKay B.D., Meynert A., Myrvold W.: Small Latin squares, quasigroups and loops.J. Combin. Designs 15 (2007), 98–119. Zbl 1112.05018, MR 2291523, 10.1002/jcd.20105
Reference: [8] Smith J.D.H.: An Introduction to Quasigroups and Their Representations.Chapman and Hall/CRC, Boca Raton, FL, 2007. Zbl 1122.20035, MR 2268350
Reference: [9] Smith J.D.H., Romanowska A.B.: Post-Modern Algebra.Wiley, New York, NY, 1999. Zbl 0946.00001, MR 1673047
Reference: [10] Wanless I.M.: Diagonally cyclic latin squares.European J. Combin. 25 (2004), 393–413. Zbl 1047.05007, MR 2036476, 10.1016/j.ejc.2003.09.014
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_13.pdf 220.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo