Previous |  Up |  Next

Article

Title: On the structure of finite loop capable nilpotent groups (English)
Author: Rytty, Miikka
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 349-355
Summary lang: English
.
Category: math
.
Summary: In this paper we consider finite loops and discuss the problem which nilpotent groups are isomorphic to the inner mapping group of a loop. We recall some earlier results and by using connected transversals we transform the problem into a group theoretical one. We will get some new answers as we show that a nilpotent group having either $C_{p^k} \times C_{p^l}$, $k > l \geq 0$ as the Sylow $p$-subgroup for some odd prime $p$ or the group of quaternions as the Sylow $2$-subgroup may not be loop capable. (English)
Keyword: loop
Keyword: group
Keyword: connected transversals
MSC: 20D10
MSC: 20D15
MSC: 20F18
MSC: 20N05
idZBL: Zbl 1211.20021
idMR: MR2682486
.
Date available: 2010-05-21T12:53:35Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140112
.
Reference: [1] Baer R.: Erweiterung von Gruppen und Ihren Isomorphismen.Math. Z. 38 (1934), 375–416. Zbl 0009.01101, MR 1545456, 10.1007/BF01170643
Reference: [2] Bruck R.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288, 10.1090/S0002-9947-1946-0017288-3
Reference: [3] Csörgö P.: On connected transversals to abelian subgroups and loop theoretical consequences.Arch. Math. 86 (2006), 499–516. MR 2241599, 10.1007/s00013-006-1379-5
Reference: [4] Doerk K., Hawkes T.: Finite Soluble Groups.de Gruyter, Berlin, 1992. Zbl 0753.20001, MR 1169099
Reference: [5] Drápal A.: Orbits of inner mapping groups.Monatsh. Math. 134 (2002), 191–206. MR 1883500, 10.1007/s605-002-8256-2
Reference: [6] Huppert B.: Endliche Gruppen I.Springer, Berlin-Heidelberg-New York, 1967. Zbl 0412.20002, MR 0224703
Reference: [7] Kepka T., Niemenmaa M.: On multiplication groups of loops.J. Algebra 135 (1990), 112–122. Zbl 0706.20046, MR 1076080, 10.1016/0021-8693(90)90152-E
Reference: [8] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups.Arch. Math. 60 (1993), 233–236. MR 1201636, 10.1007/BF01198806
Reference: [9] Mazur M.: Connected transversals to nilpotent groups.J. Group Theory 10 (2007), 195–203. Zbl 1150.20010, MR 2302614, 10.1515/JGT.2007.015
Reference: [10] Niemenmaa M.: On finite loops whose inner mapping groups are abelian.Bull. Austral. Math. Soc. 71 (2005), 487–492. Zbl 1080.20061, MR 2150938, 10.1017/S0004972700038491
Reference: [11] Niemenmaa M.: On the structure of finite loop capable Abelian groups.Comment. Math. Univ. Carolin. 48,2 (2007), 217–224. Zbl 1174.20345, MR 2338090
Reference: [12] Niemenmaa M.: Finite loops with nilpotent inner mapping groups are centrally nilpotent.Bull. Aust. Math. Soc. 79 (2009), 109–114. Zbl 1167.20039, MR 2486887, 10.1017/S0004972708001093
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_18.pdf 209.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo