Article
Keywords:
Finsler manifold; Landsberg manifold; scalar flag curvature; sectional flag curvature; Cartan tensor
Summary:
In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.
References:
[1] Akbar-Zadeh, H.:
Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. Roy. Belg. Bull. Cl. Sci. (6) 74 (1988), 281–322.
MR 1052466 |
Zbl 0686.53020
[2] Chen, B., Zhao, L. L.:
Randers metrics of sectional flag curvature. Houston J. Math., to appear.
MR 2610781
[4] Chern, S. S.:
Local equivalence and Euclidean connections in Finsler spaces. Sci. Rep. Nat. Tsing Hua Univ. Ser. A5 (1948), 95–121, or Selected Papers, II, 194-212, Springer 1989.
MR 0031812 |
Zbl 0200.00004
[5] Chern, S. S., Shen, Z.:
Riemannian-Finsler geometry. World Sci., Singapore, 2005.
MR 2169595
[7] Numata, S.:
On Landsberg spaces of scalar curvature. J. Korean Math. Soc. 12 (1975), 97–100.
MR 0402643 |
Zbl 0314.53017