[1] Boeckx, E., Kowalski, O., Vanhecke, L.:
Riemannian manifolds of conullity two. World Scientific, 1996.
MR 1462887 |
Zbl 0904.53006
[5] Calvaruso, G.:
Einstein-like Lorentz metrics and three-dimensional curvature homogeneity of order one. Canad. Math. Bull., to appear.
MR 1811888
[6] Calvaruso, G.:
Conformally flat semi-symmetric spaces. Arch. Math. (Brno) 41 (2005), 27–36.
MR 2142141 |
Zbl 1114.53027
[13] Chaichi, M., García-Río, E., Vázquez-Abal, M. E.:
Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A: Math. Gen. 38 (2005), 841–850.
DOI 10.1088/0305-4470/38/4/005 |
MR 2125237
[14] Deprez, J., Desczcz, R., Verstraelen, L.:
Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math. 17 (1989), 51–65.
MR 1007875
[15] García-Río, E., Haji-Badali, A., Vázquez-Abal, M. E., Vázquez-Lorenz, R.:
Lorentzian $3$-manifolds with commuting curvature operators. Int. J. Geom. Methods Mod. Phys. 5 (4) (2008), 557–572.
DOI 10.1142/S0219887808002941 |
MR 2428812
[16] Hashimoto, N., Sekizawa, M.:
Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286.
MR 1811172 |
Zbl 1054.53060
[19] O’Neill, B.:
Semi-Riemannian Geometry. Academic Press, New York, 1983.
MR 0719023
[20] Ryan, P.:
A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., 1971 (2), Dalhousie Univ. Halifax, 1972, pp. 115–124.
MR 0487882 |
Zbl 0267.53024
[21] Sekigawa, K., Takagi, H.:
On conformally flat spaces satisfyig a certain condition on the Ricci tensor. Tôhoku Math. J. 23 (1971), 1–11.
DOI 10.2748/tmj/1178242681 |
MR 0284946
[23] Szabó, Z. I.:
Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, The local version. J. Differential Geom. 17 (1982), 531–582.
MR 0683165
[24] Szabó, Z. I.:
Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65–108.
DOI 10.1007/BF00233102 |
MR 0797152