Previous |  Up |  Next

Article

Keywords:
conformally flat manifolds; semi-symmetric and pseudo-symmetric spaces; homogeneous and curvature homogeneous spaces
Summary:
We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described.
References:
[1] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two. World Scientific, 1996. MR 1462887 | Zbl 0904.53006
[2] Brozos-Vázquez, M., García-Río, E., Vázquez-Lorenzo, R.: Some remarks on locally conformally flat static space-times. J. Math. Phys. 46 (2005), 11pp., 022501. DOI 10.1063/1.1832755 | MR 2121707 | Zbl 1076.53084
[3] Bueken, P.: On curvature homogeneous three-dimensional Lorentzian manifolds. J. Geom. Phys. 22 (1997), 349–362. DOI 10.1016/S0393-0440(96)00037-X | MR 1454495 | Zbl 0881.53055
[4] Bueken, P., Djorić, M.: Three-dimensional Lorentz metrics and curvature homogeneity of order one. Ann. Glob. Anal. Geom. 18 (2000), 85–103. DOI 10.1023/A:1006612120550 | MR 1739527
[5] Calvaruso, G.: Einstein-like Lorentz metrics and three-dimensional curvature homogeneity of order one. Canad. Math. Bull., to appear. MR 1811888
[6] Calvaruso, G.: Conformally flat semi-symmetric spaces. Arch. Math. (Brno) 41 (2005), 27–36. MR 2142141 | Zbl 1114.53027
[7] Calvaruso, G.: Conformally flat pseudo-symmetric spaces of constant type. Czechoslovak Math. J. 56 (131) (2006), 649–657. DOI 10.1007/s10587-006-0045-1 | MR 2291764 | Zbl 1164.53339
[8] Calvaruso, G.: Einstein-like metrics on three-dimensional homogeneous Lorentzian manifold. Geom. Dedicata 127 (2007), 99–119. DOI 10.1007/s10711-007-9163-7 | MR 2338519
[9] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57 (2007), 1279–1291. DOI 10.1016/j.geomphys.2006.10.005 | MR 2287304 | Zbl 1112.53051
[10] Calvaruso, G., De Leo, B., : Pseudo-symmetric Lorentzian three-manifolds. Int. J. Geom. Methods Mod. Phys. 6 (7) (2009), 1–16. DOI 10.1142/S0219887809004132 | MR 2589823 | Zbl 1192.53064
[11] Calvaruso, G., Van der Veken, J., : Lorentzian symmetric three-spaces and their parallel surfaces. Internat. J. Math. 20 (10) (2009), 1185–1205. DOI 10.1142/S0129167X09005728 | MR 2574312
[12] Calvaruso, G., Vanhecke, L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture. Bull. Austral. Math. Soc. 57 (1998), 109–115. DOI 10.1017/S0004972700031452 | MR 1623824 | Zbl 0903.53031
[13] Chaichi, M., García-Río, E., Vázquez-Abal, M. E.: Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A: Math. Gen. 38 (2005), 841–850. DOI 10.1088/0305-4470/38/4/005 | MR 2125237
[14] Deprez, J., Desczcz, R., Verstraelen, L.: Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math. 17 (1989), 51–65. MR 1007875
[15] García-Río, E., Haji-Badali, A., Vázquez-Abal, M. E., Vázquez-Lorenz, R.: Lorentzian $3$-manifolds with commuting curvature operators. Int. J. Geom. Methods Mod. Phys. 5 (4) (2008), 557–572. DOI 10.1142/S0219887808002941 | MR 2428812
[16] Hashimoto, N., Sekizawa, M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286. MR 1811172 | Zbl 1054.53060
[17] Honda, K.: Conformally flat semi-Riemannian manifolds with commuting curvature and Ricci operators. Tokyo J. Math. 26 (1) (2003), 241–260. DOI 10.3836/tjm/1244208691 | MR 1982008 | Zbl 1055.53054
[18] Honda, K., Tsukada, K.: Three-dimensional conformally flat homogeneous Lorentzian manifolds. J. Phys. A: Math. Theor. 40 (2007), 831–851. DOI 10.1088/1751-8113/40/4/017 | MR 2303606 | Zbl 1116.53042
[19] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York, 1983. MR 0719023
[20] Ryan, P.: A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., 1971 (2), Dalhousie Univ. Halifax, 1972, pp. 115–124. MR 0487882 | Zbl 0267.53024
[21] Sekigawa, K., Takagi, H.: On conformally flat spaces satisfyig a certain condition on the Ricci tensor. Tôhoku Math. J. 23 (1971), 1–11. DOI 10.2748/tmj/1178242681 | MR 0284946
[22] Singer, I. M.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685–697. DOI 10.1002/cpa.3160130408 | MR 0131248 | Zbl 0171.42503
[23] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, The local version. J. Differential Geom. 17 (1982), 531–582. MR 0683165
[24] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65–108. DOI 10.1007/BF00233102 | MR 0797152
[25] Takagi, H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108. DOI 10.2748/tmj/1178241595 | MR 0319109
[26] Takagi, H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tohôku Math. J. 27 (1975), 103–110. DOI 10.2748/tmj/1178241040 | MR 0442852 | Zbl 0323.53037
Partner of
EuDML logo