Previous |  Up |  Next

Article

Title: Application of MCMC to change point detection (English)
Author: Antoch, Jaromír
Author: Legát, David
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 4
Year: 2008
Pages: 281-296
Summary lang: English
.
Category: math
.
Summary: A nonstandard approach to change point estimation is presented in this paper. Three models with random coefficients and Bayesian approach are used for modelling the year average temperatures measured in Prague Klementinum. The posterior distribution of the change point and other parameters are estimated from the random samples generated by the combination of the Metropolis-Hastings algorithm and the Gibbs sampler. (English)
Keyword: change point estimation
Keyword: Markov chain Monte Carlo (MCMC)
Keyword: Metropolis-Hastings algorithm
Keyword: Gibbs sampler
Keyword: Bayesian statistics
Keyword: Klementinum temperature series
MSC: 62F40
MSC: 62P12
MSC: 65C05
MSC: 65C40
MSC: 65C60
MSC: 86A10
idZBL: Zbl 1199.65016
idMR: MR2433722
DOI: 10.1007/s10492-008-0026-9
.
Date available: 2010-07-20T12:24:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140321
.
Reference: [1] Antoch, J., Hušková, M., Jarušková, D.: Off-line statistical process control.In: Multivariate Total Quality Control, Chapter 1 Physica-Verlag/Springer Heidelberg (2002), 1-86. Zbl 1039.62110, MR 1886416
Reference: [2] Antoch, J., Hušková, M.: Estimators of changes.Asymptotics, Nonparametrics, and Time Series Marcel Dekker Basel (1999), 533-577. MR 1724708
Reference: [3] Barry, D., Hartigan, J.: A Bayesian analysis for change-point problems.J. Am. Stat. Assoc. 88 (1993), 309-319. Zbl 0775.62065, MR 1212493
Reference: [4] Carlin, B. P., Gelfand, A. E., Smith, A. F. M.: Hierarchical Bayesian analysis of change point problems.Appl. Stat. 41 (1992), 389-405. 10.2307/2347570
Reference: [5] Csörgő, M., Horváth, L.: Limit Theorems in Change-Point Analysis.J. Wiley & Sons New York (1997). MR 2743035
Reference: [6] Gilks, W. R., Richardson, S., (eds.), D. J. Spiegelhalter: Markov Chain Monte Carlo in Practice.Chapman & Hall/CRC London (1995). MR 1397966
Reference: [7] Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications.Biometrika 57 (1970), 97-109. Zbl 0219.65008, 10.1093/biomet/57.1.97
Reference: [8] Hinkley, D. V.: Inference about the intersection in two-phase regression.Biometrika 56 (1969), 495-504. Zbl 0183.48505, 10.1093/biomet/56.3.495
Reference: [9] Janžura, M., Nielsen, J.: Segmentation method and change-point problem.ROBUST'02 J. Antoch, G. Dohnal, J. Klaschka JČMF Praha 163-177 Czech.
Reference: [10] Jarušková, D.: Some problems with application of change point detection methods to enviromental data.Environmetrics 8 (1997), 469-483. 10.1002/(SICI)1099-095X(199709/10)8:5<469::AID-ENV265>3.0.CO;2-J
Reference: [11] Legát, D.: MCMC methods.Master thesis Charles University Praha (2004), Czech.
Reference: [12] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E.: Equations of state calculations by fast computing machines.J. Chem. Phys. 21 (1953), 1087-1092. 10.1063/1.1699114
Reference: [13] O'Hogan, A., Foster, J.: Kendall's Advanced Theory of Statistics, Bayesian Inference.Arnold London (1999).
Reference: [14] Robert, Ch. P., Casella, G.: Monte Carlo Statistical Methods, 2nd ed.Springer Heidelberg (2005). MR 2080278
.

Files

Files Size Format View
AplMat_53-2008-4_1.pdf 560.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo