Previous |  Up |  Next

Article

Keywords:
optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement
Summary:
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.
References:
[1] Alt, W.: On the approximation of infinite optimisation problems with an application to optimal control problems. Appl. Math. Optimization 12 (1984), 15-27. DOI 10.1007/BF01449031 | MR 0756510
[2] Atkinson, K. E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press Cambridge (1997). MR 1464941 | Zbl 0899.65077
[3] Babuška, I., A. K. Aziz \rm(eds.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press New York (1972). MR 0347104
[4] Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000), 113-132. DOI 10.1137/S0363012999351097 | MR 1780911 | Zbl 0967.65080
[5] Brunner, H., Yan, N.: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations. J. Comput. Appl. Math. 67 (1996), 185-189. DOI 10.1016/0377-0427(96)00012-X | MR 1388148 | Zbl 0857.65145
[6] Brunner, H., Yan, N.: Finite element methods for optimal control problems governed by integral equations and integro-differential equations. Numer. Math. 101 (2005), 1-27. DOI 10.1007/s00211-005-0608-3 | MR 2194716 | Zbl 1076.65057
[7] Chen, Y., Liu, W.: Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int. J. Numer. Anal. Model. 3 (2006), 311-321. MR 2237885 | Zbl 1125.49026
[8] Chen, Y., Yi, N., Liu, W.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46 (2008), 2254-2275. DOI 10.1137/070679703 | MR 2421035 | Zbl 1175.49003
[9] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. North-Holland Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[10] Du, L., Yan, N.: High-accuracy finite element method for optimal control problem. J. Syst. Sci. Complex. 14 (2001), 106-110. MR 1836999 | Zbl 0983.49022
[11] Falk, F. S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973), 28-47. DOI 10.1016/0022-247X(73)90022-X | MR 0686788 | Zbl 0268.49036
[12] French, D. A., King, J. T.: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Appl. Optim. 12 (1991), 299-314. DOI 10.1080/01630569108816430 | MR 1143001 | Zbl 0724.65069
[13] Ge, L., Liu, W., Yang, D.: An equivalent a posteriori error estimate for a constrained optimal control problem. (to appear).
[14] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions. Noordhoff International Publishing Leyden (1976). MR 0385645
[15] Kress, R.: Linear Integral Equations, 2nd Edition. Springer New York (1999). MR 1723850
[16] Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33 (2007), 155-182. DOI 10.1007/s10915-007-9147-7 | MR 2342593 | Zbl 1128.65048
[17] Yan, Q. Lin N.: Structure and Analysis for Efficient Finite Element Methods. Publishers of Hebei University Hebei (1996), Chinese.
[18] Lin, Q., Zhang, S., Yan, N.: An acceleration method for integral equations by using interpolation post-processing. Adv. Comput. Math. 9 (1998), 117-129. DOI 10.1023/A:1018925103993 | MR 1662762 | Zbl 0920.65087
[19] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer Berlin (1971). MR 0271512 | Zbl 0203.09001
[20] Lions, J.-L.: Some Methods in the Mathematical Analysis of Systems and their Control. Science Press Beijing (1981). MR 0664760 | Zbl 0542.93034
[21] Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press Beijing (2008).
[22] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39 (2001), 73-99. DOI 10.1137/S0036142999352187 | MR 1860717 | Zbl 0988.49018
[23] Liu, W. B., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001), 285-309. DOI 10.1023/A:1014239012739 | MR 1887737 | Zbl 1008.49024
[24] Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004), 970-985. DOI 10.1137/S0363012903431608 | MR 2114385 | Zbl 1071.49023
[25] Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker New York (1994). MR 1275836
[26] Tiba, D.: Lectures on the Optimal Control of Elliptic Equations. University of Jyväskylä Press Jyväskylä (1995).
[27] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press Beijing (2008).
[28] Yan, N.: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems. Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419.
[29] Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya.: Integral Equations. A Reference Text. Noordhoff International Publishing Leyden (1975).
[30] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. DOI 10.1002/nme.1620330702 | Zbl 0769.73085
[31] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. DOI 10.1002/nme.1620330702 | Zbl 0769.73085
Partner of
EuDML logo