[1] Alt, W.:
On the approximation of infinite optimisation problems with an application to optimal control problems. Appl. Math. Optimization 12 (1984), 15-27.
DOI 10.1007/BF01449031 |
MR 0756510
[2] Atkinson, K. E.:
The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press Cambridge (1997).
MR 1464941 |
Zbl 0899.65077
[3] Babuška, I., A. K. Aziz \rm(eds.):
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press New York (1972).
MR 0347104
[7] Chen, Y., Liu, W.:
Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int. J. Numer. Anal. Model. 3 (2006), 311-321.
MR 2237885 |
Zbl 1125.49026
[9] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. North-Holland Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[10] Du, L., Yan, N.:
High-accuracy finite element method for optimal control problem. J. Syst. Sci. Complex. 14 (2001), 106-110.
MR 1836999 |
Zbl 0983.49022
[13] Ge, L., Liu, W., Yang, D.: An equivalent a posteriori error estimate for a constrained optimal control problem. (to appear).
[14] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.:
Integral Operators in Spaces of Summable Functions. Noordhoff International Publishing Leyden (1976).
MR 0385645
[15] Kress, R.:
Linear Integral Equations, 2nd Edition. Springer New York (1999).
MR 1723850
[17] Yan, Q. Lin N.: Structure and Analysis for Efficient Finite Element Methods. Publishers of Hebei University Hebei (1996), Chinese.
[19] Lions, J.-L.:
Optimal Control of Systems Governed by Partial Differential Equations. Springer Berlin (1971).
MR 0271512 |
Zbl 0203.09001
[20] Lions, J.-L.:
Some Methods in the Mathematical Analysis of Systems and their Control. Science Press Beijing (1981).
MR 0664760 |
Zbl 0542.93034
[21] Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press Beijing (2008).
[25] Neittaanmäki, P., Tiba, D.:
Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker New York (1994).
MR 1275836
[26] Tiba, D.: Lectures on the Optimal Control of Elliptic Equations. University of Jyväskylä Press Jyväskylä (1995).
[27] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press Beijing (2008).
[28] Yan, N.: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems. Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419.
[29] Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya.: Integral Equations. A Reference Text. Noordhoff International Publishing Leyden (1975).
[30] Zienkiewicz, O. C., Zhu, J. Z.:
The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382.
DOI 10.1002/nme.1620330702 |
Zbl 0769.73085
[31] Zienkiewicz, O. C., Zhu, J. Z.:
The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382.
DOI 10.1002/nme.1620330702 |
Zbl 0769.73085