[1] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.:
Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic Dordrecht (1999).
MR 1680024 |
Zbl 1157.34301
[4] delPino, M. A., Elgueta, M., Manásevich, R. F.:
A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$. J. Differ. Equ. 80 (1989), 1-13.
DOI 10.1016/0022-0396(89)90093-4 |
MR 1003248
[5] delPino, M. A., Manásevich, R. F.:
Multiple solutions for the $p$-Laplacian under global nonresonance. Proc. Am. Math. Soc. 112 (1991), 131-138.
MR 1045589
[6] Gaines, R. E., Mawhin, J. L.:
Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math., Vol. 568. Springer Berlin (1977).
DOI 10.1007/BFb0089537 |
MR 0637067
[9] Karakostas, G. L.:
Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function. Electron. Diff. Equ. 69 (2004), 1-13.
MR 2057656 |
Zbl 1057.34010
[10] Karakostas, G. L.:
Positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function. Electron. Diff. Equ. 68 (2004), 1-12.
MR 2057655 |
Zbl 1057.34010
[23] Wang, Y., Zhao, W., Ge, W.:
Multiple positive solutions for boundary value problems of second order delay differential equations with one-dimensional $p$-Laplacian. J. Math. Anal. Appl. 326 (2007), 641-654.
DOI 10.1016/j.jmaa.2006.03.028 |
MR 2277809 |
Zbl 1119.34050