Title:
|
Compact images of spaces with a weaker metric topology (English) |
Author:
|
Yan, Peng-fei |
Author:
|
Lü, Cheng |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
4 |
Year:
|
2008 |
Pages:
|
921-926 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
If $X$ is a space that can be mapped onto a metric space by a one-to-one mapping, then $X$ is said to have a weaker metric topology. \endgraf In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that \endgraf (1) $Y$ is a sequence-covering compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\{\mathcal F_i\}_{i\in \mathbb N}$ of point-finite $cs$-covers such that $ {\bigcap _{i\in \mathbb N}}\mathop{\rm st} (y,\mathcal F_i)=\{y\}$ for each $y\in Y$. \endgraf (2) $Y$ is a sequentially-quotient compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\{\mathcal F_i\}_{i\in \mathbb N}$ of point-finite $cs^*$-covers such that ${\bigcap _{i\in \mathbb N}}\mathop{\rm st} (y,\mathcal F_i)=\{y\}$ for each $y\in Y$. (English) |
Keyword:
|
sequence-covering mappings |
Keyword:
|
sequentially-quotient mappings |
Keyword:
|
compact mappings |
Keyword:
|
weaker metric topology |
MSC:
|
54C10 |
MSC:
|
54C40 |
MSC:
|
54E99 |
idZBL:
|
Zbl 1174.54022 |
idMR:
|
MR2471157 |
. |
Date available:
|
2010-07-21T08:05:28Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140431 |
. |
Reference:
|
[1] Arhangel'skii, A. V.: Mappings and spaces.Russian Math. Surveys 21 (1966), 115-162. MR 0227950, 10.1070/RM1966v021n04ABEH004169 |
Reference:
|
[2] Chaber, J.: Mappings onto metric spaces.Topology Appl. 14 (1982), 31-42. Zbl 0491.54006, MR 0662810, 10.1016/0166-8641(82)90045-1 |
Reference:
|
[3] Engelking, R.: General Topology.PWN, Warszawa (1977). Zbl 0373.54002, MR 0500780 |
Reference:
|
[4] Foged, L.: A characterization of closed images of metric spaces.Proc AMS 95 (1985), 487-490. Zbl 0592.54027, MR 0806093 |
Reference:
|
[5] Franklin, S. P.: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107-115. Zbl 0132.17802, MR 0180954, 10.4064/fm-57-1-107-115 |
Reference:
|
[6] Ge, Y.: On compact images of locally separable metric spaces.Topology Proc. 27 (2003), 351-360. Zbl 1072.54020, MR 2048944 |
Reference:
|
[7] Gruenhage, G., Michael, E., Tanaka, Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303-332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303 |
Reference:
|
[8] Liu, C., Tanaka, Y.: Spaces with certain compact-countable k-network, and questions.Questions Answers Gen. Topology 14 (1996), 15-37. MR 1384050 |
Reference:
|
[9] Lin, S.: Point-Countable Covers and Sequence-Covering Mappings.Chinese Science Press, Beijing (2002). Zbl 1004.54001, MR 1939779 |
Reference:
|
[10] Lin, S.: A note on sequence-covering mappings.Acta Math Hungar 107 (2005), 193-197. Zbl 1081.54025, MR 2148582 |
Reference:
|
[11] Lin, S., Liu, C.: On spaces with point-countable $cs$-networks.Topology Appl. 74 (1996), 51-60. Zbl 0869.54036, MR 1425925, 10.1016/S0166-8641(96)00043-0 |
Reference:
|
[12] Lin, S., Yan, P.: Sequence-covering maps of metric spaces.Topology Appl. 109 (2001), 301-314. Zbl 0966.54012, MR 1807392, 10.1016/S0166-8641(99)00163-7 |
Reference:
|
[13] Lin, S., Yan, P.: On sequence-covering compact mappings.Acta Math. Sinica 44 (2001), 175-182. Zbl 1005.54031, MR 1819992 |
Reference:
|
[14] Tanaka, Y.: Symmetric spaces, $g$-developable spaces and $g$-metrizable spaces.Math. Japonica 36 (1991), 71-84. Zbl 0732.54023, MR 1093356 |
Reference:
|
[15] Tanaka, Y., Xia, S.: Certain $s$-images of locally separable metric spaces.Questions Answers Gen. Topology 14 (1996), 217-231. Zbl 0858.54030, MR 1403347 |
Reference:
|
[16] Yan, P.: The compact images of metric spaces.J. Math. Study 30 (1997), 185-187. Zbl 0918.54029, MR 1468151 |
Reference:
|
[17] Yan, P.: On strong sequence-covering compact mapping.Northeastern Math. J. 14 (1998), 341-344. MR 1685267 |
. |