Previous |  Up |  Next

Article

Keywords:
Riccati equation; stochastic uniform observability; stabilizability; quadratic control; tracking problem
Summary:
In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see \cite {chen}, for finite dimensional stochastic equations or \cite {UC}, for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see \cite {1990}, \cite {ukl}). Under stabilizability and uniform observability conditions and assuming that the control weight-costs are uniformly positive, we establish that BDRE has a unique, uniformly positive, bounded on ${\mathbf R}_{+}$ and stabilizing solution. Using this result we find the optimal control and the optimal cost. It is known \cite {ukl} that uniform observability does not imply detectability and consequently our results are different from those obtained under detectability conditions (see \cite {1990}).
References:
[1] Barbu, V., Prato, G. Da: Hamilton Jacobi Equations in Hilbert Spaces. Research Notes in Mathematics, 86. Boston-London-Melbourne: Pitman Advanced Publishing Program (1983). MR 0704182 | Zbl 0508.34001
[2] Chen, S., Zhou, Xun YU: Stochastic linear quadratic regulators with indefinite control weight costs. II. SIAM J. Control Optimization 39 1065-1081 (2000). DOI 10.1137/S0363012998346578 | MR 1814267 | Zbl 1023.93072
[3] Curtain, R., Pritchard, J.: Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences. 8. Berlin-Heidelberg-New York: Springer-Verlag. VII (1978). MR 0516812 | Zbl 0389.93001
[4] Curtain, R., Falb, P.: Ito's Lemma in infinite dimensions. J. Math. Anal. Appl. 31 434-448 (1970). DOI 10.1016/0022-247X(70)90037-5 | MR 0261718 | Zbl 0233.60051
[5] Dragan, V., Morozan, T.: Stochastic observability and applications. IMA J. Math. Control Inf. 21 323-344 (2004). DOI 10.1093/imamci/21.3.323 | MR 2076224 | Zbl 1060.93019
[6] Grecksch, W., Tudor, C.: Stochastic Evolution Equations. A Hilbert Space Approach. Mathematical Research. 85. Berlin: Akademie Verlag (1995). MR 1353910 | Zbl 0831.60069
[7] Douglas, R.: Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, 49. New York-London: Academic Press. XVI (1972). MR 0361893 | Zbl 0247.47001
[8] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer-Verlag, Berlin, New York (1983). MR 0710486 | Zbl 0516.47023
[9] Prato, G. Da: Quelques résultats d'existence, unicité et régularité pour une problème de la théorie du contrôle. J. Math. Pures et Appl. 52 (1973), 353-375. MR 0358430
[10] Prato, G. Da, Ichikawa, A.: Quadratic control for linear time-varying systems. SIAM. J. Control and Optimization 28 359-381 (1990). DOI 10.1137/0328019 | MR 1040464 | Zbl 0692.49006
[11] Prato, G. Da, Zabczyc, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. 44. Cambridge, Cambridge University Press. xviii (1992). MR 1207136
[12] Prato, G. Da, Ichikawa, A.: Quadratic control for linear periodic systems. Appl. Math. Optimization 18 39-66 (1988). DOI 10.1007/BF01443614 | MR 0928209 | Zbl 0647.93057
[13] Prato, G. Da, Ichikawa, A.: Lyapunov equations for time-varying linear systems. Syst. Control Lett. 9 165-172 (1987). DOI 10.1016/0167-6911(87)90023-5 | MR 0906236 | Zbl 0678.93051
[14] Pritchard, A. J., Zabczyc, J.: Stability and Stabilizability of Infinite Dimensional Systems. SIAM Rev. 23 25-52 (1981). DOI 10.1137/1023003 | MR 0605439
[15] Morozan, T.: Stochastic uniform observability and Riccati equations of stochastic control. Rev. Roum. Math. Pures Appl. 38 771-781 (1993). MR 1262989 | Zbl 0810.93069
[16] Morozan, T.: On the Riccati Equation of Stochastic Control. Optimization, optimal control and partial differential equations. Proc. 1st Fr.-Rom. Conf., Iasi/Rom. (1992).
[17] Morozan, T.: Linear quadratic, control and tracking problems for time-varying stochastic differential systems perturbed by a Markov chain. Rev. Roum. Math. Pures Appl. 46 783-804 (2001). MR 1929525 | Zbl 1078.93574
[18] Ungureanu, V. M.: Riccati equation of stochastic control and stochastic uniform observability in infinite dimensions. Barbu, Viorel (ed.) et al., Analysis and optimization of differential systems. IFIP TC7/WG 7.2 international working conference, Constanta, Romania, September 10-14, 2002. Boston, MA: Kluwer Academic Publishers 421-432 (2003). MR 1993734 | Zbl 1071.93014
[19] Ungureanu, V. M.: Uniform exponential stability for linear discrete time systems with stochastic perturbations in Hilbert spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 7 757-772 (2004). MR 2101664
[20] Ungureanu, V. M.: Representations of mild solutions of time-varying linear stochastic equations and the exponential stability of periodic systems. Electron. J. Qual. Theory Differ. Equ. 2004, Paper No. 4, 22 p. (2004). MR 2039027 | Zbl 1072.60047
[21] Ungureanu, V. M.: Cost of tracking for differential stochastic equations in Hilbert spaces. Stud. Univ. Babeş-Bolyai, Math. 50 73-81 (2005). MR 2247532 | Zbl 1113.60061
[22] Ungureanu, V. M.: Stochastic uniform observability of linear differential equations with multiplicative noise. J. Math. Anal. Appl. 343 446-463 (2008). DOI 10.1016/j.jmaa.2008.01.058 | MR 2412142 | Zbl 1147.60043
[23] Ungureanu, V. M.: Stochastic uniform observability of general linear differential equations. Dynamical Systems 23 333-350 (2008). DOI 10.1080/14689360802275773 | MR 2455264 | Zbl 1155.93017
[24] Tudor, C.: Optimal control for an infinite-dimensional periodic problem under white noise perturbations. SIAM J. Control Optimization 28 253-264 (1990). DOI 10.1137/0328014 | MR 1040459 | Zbl 0693.93086
[25] Yosida, K.: Functional analysis. 6th ed. Grundlehren der mathematischen Wissenschaften, 123. Berlin-Heidelberg-New York: Springer-Verlag. XII (1980). MR 0617913 | Zbl 0435.46002
Partner of
EuDML logo