Previous |  Up |  Next

Article

Title: Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$ (English)
Author: Wei, Guoxin
Author: Liu, Qiuli
Author: Suh, Young Jin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 343-351
Summary lang: English
.
Category: math
.
Summary: In this paper, we study closed $k$-maximal spacelike hypersurfaces $M^n$ in anti-de Sitter space $H_1^{n+1}(-1)$ with two distinct principal curvatures and give some integral formulas about these hypersurfaces. (English)
Keyword: anti-de Sitter space
Keyword: $k$th mean curvature
Keyword: Gauss equations
MSC: 53B30
MSC: 53C40
MSC: 53C42
MSC: 53C50
MSC: 53Z05
idZBL: Zbl 1224.53038
idMR: MR2532379
.
Date available: 2010-07-20T15:11:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140484
.
Reference: [1] Calabi, E.: Examples of Bernstein problems for nonlinear equations.Proc. Symp. Pure Math. 15 (1970), 223-230. MR 0264210
Reference: [2] Cao, L., Wei, G.: A new characterization of hyperbolic cylinder in anti de Sitter space $H^{n+1}_1(-1)$.J. Math. Anal. Appl. 329 (2007), 408-414. Zbl 1112.53052, MR 2306811, 10.1016/j.jmaa.2006.06.075
Reference: [3] Cheng, S. Y., Yau, S. T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces.Ann. Math. 104 (1976), 407-419. Zbl 0352.53021, MR 0431061, 10.2307/1970963
Reference: [4] Hu, Z., Scherfner, M., Zhai, S.: On spacelike hypersurfaces with constant scalar curvature in the de Sitter space.Differ. Geom. Appl. 25 (2007), 594-611. Zbl 1134.53034, MR 2373937, 10.1016/j.difgeo.2007.06.008
Reference: [5] Ishihara, T.: Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature.Mich. Math. J. 35 (1988), 345-352. Zbl 0682.53055, MR 0978304, 10.1307/mmj/1029003815
Reference: [6] Li, H.: Hypersurfaces with constant scalar curvature in space forms.Math. Ann. 305 (1996), 665-672. Zbl 0864.53040, MR 1399710, 10.1007/BF01444243
Reference: [7] Li, H.: Global rigidity theorems of hypersurfaces.Ark. Mat. 35 (1997), 327-351. Zbl 0920.53028, MR 1478784, 10.1007/BF02559973
Reference: [8] Omori, H.: Isometric immersions of Riemannian manifolds.J. Math. Soc. Japan. 19 (1967), 205-214. Zbl 0154.21501, MR 0215259, 10.2969/jmsj/01920205
Reference: [9] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature.Am. J. Math. 92 (1970), 145-173. Zbl 0196.25102, MR 0264565, 10.2307/2373502
Reference: [10] Perdomo, O.: Rigidity of minimal hypersurfaces of spheres with two principal curvatures.Arch. Math. 82 (2004), 180-184. Zbl 1062.53055, MR 2047672, 10.1007/s00013-003-4834-6
Reference: [11] Wang, Q. L.: Rigidity of Clifford minimal hypersurfaces.Monatsh. Math. 140 (2003), 163-167. Zbl 1066.53112, MR 2017667, 10.1007/s00605-002-0039-5
Reference: [12] Wei, G. X.: Rigidity theorem for hypersurfaces in a unit sphere.Monatsh. Math. 149 (2006), 343-350. Zbl 1110.53050, MR 2284653, 10.1007/s00605-005-0378-0
.

Files

Files Size Format View
CzechMathJ_59-2009-2_5.pdf 237.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo