| Title:
|
Orbit projections as fibrations (English) |
| Author:
|
Rainer, Armin |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
59 |
| Issue:
|
2 |
| Year:
|
2009 |
| Pages:
|
529-538 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
The orbit projection $\pi \: M \to M/G$ of a proper $G$-manifold $M$ is a fibration if and only if all points in $M$ are regular. Under additional assumptions we show that $\pi $ is a quasifibration if and only if all points are regular. We get a full answer in the equivariant category: $\pi $ is a $G$-quasifibration if and only if all points are regular. (English) |
| Keyword:
|
orbit projection |
| Keyword:
|
proper $G$-manifold |
| Keyword:
|
fibration |
| Keyword:
|
quasifibration |
| MSC:
|
55R05 |
| MSC:
|
55R65 |
| MSC:
|
57S15 |
| idZBL:
|
Zbl 1224.55003 |
| idMR:
|
MR2532388 |
| . |
| Date available:
|
2010-07-20T15:22:09Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140495 |
| . |
| Reference:
|
Consequently, using the fact that G G/H, G G/K are fibrations, we obtain the commuting diagram n+1 (G) n+1 (G) // n+1 (G/H) // n+1 (G/K) // n (H) // n (K) // n (G) // n (G) : n (G/H).n (G/K) |
| . |