Title:
|
A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces (English) |
Author:
|
Schumacher, Katrin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
637-648 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Given a domain $\Omega $ of class $C^{k,1}$, $k\in \Bbb N $, we construct a chart that maps normals to the boundary of the half space to normals to the boundary of $\Omega $ in the sense that $(\partial- {\partial x_n})\alpha (x',0)= - N(x')$ and that still is of class $C^{k,1}$. As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to $k$ on domains of class $C^{k,1}$. The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights. (English) |
Keyword:
|
chart |
Keyword:
|
coordinate transformation |
Keyword:
|
normal vector |
Keyword:
|
normal derivative |
Keyword:
|
extension theorem |
Keyword:
|
Muckenhoupt weight |
MSC:
|
35A25 |
MSC:
|
35A99 |
MSC:
|
46E35 |
MSC:
|
46N20 |
MSC:
|
47A20 |
idZBL:
|
Zbl 1218.47019 |
idMR:
|
MR2545646 |
. |
Date available:
|
2010-07-20T15:31:45Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140506 |
. |
Reference:
|
[1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}: $H_\infty$-calculus.J. Math. Fluid Mech. 7 223-260 (2005). Zbl 1083.35085, MR 2177128, 10.1007/s00021-004-0117-7 |
Reference:
|
[2] Chua, S.-K.: Extension theorems on weighted Sobolev spaces.Indiana Univ. Math. J. 41 1027-1076 (1992). Zbl 0767.46025, MR 1206339, 10.1512/iumj.1992.41.41053 |
Reference:
|
[3] Curbera, G. P., García-Cuerva, J., Martell, J. M., Pérez, C.: Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals.Adv. Math. 203 256-318 (2006). MR 2231047, 10.1016/j.aim.2005.04.009 |
Reference:
|
[4] Evans, L. C.: Partial Differential Equations.American Mathematical Society, Providence (1998). Zbl 0902.35002, MR 1625845 |
Reference:
|
[5] Farwig, R., Galdi, G. P., Sohr, H.: Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data.Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser 64 113-136 (2005). MR 2185213, 10.1007/3-7643-7385-7_7 |
Reference:
|
[6] Farwig, R., Sohr, H.: Weighted {$L^q$}-theory for the Stokes resolvent in exterior domains.J. Math. Soc. Japan 49 251-288 (1997). MR 1601373, 10.2969/jmsj/04920251 |
Reference:
|
[7] Fröhlich, A.: Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenr�umen.Shaker Verlag, Aachen (2001). |
Reference:
|
[8] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces I: Weighted estimates for the Stokes resolvent problem in a half space.J. Math. Fluid Mech. 5 166-199 (2003). MR 1982327, 10.1007/s00021-003-0080-8 |
Reference:
|
[9] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces {II}: Weighted resolvent estimates and maximal {$L^p$}-regularity.Math. Ann. 339 287-316 (2007). MR 2324721, 10.1007/s00208-007-0114-2 |
Reference:
|
[10] Galdi, G. P., Simader, C. G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-\frac1q,q}$.Math. Ann. 331 41-74 (2005). Zbl 1064.35133, MR 2107439, 10.1007/s00208-004-0573-7 |
Reference:
|
[11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted norm inequalities and related topics.North Holland, Amsterdam (1985). MR 0807149 |
Reference:
|
[12] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces.Math. Z. 178 297-329 (1981). Zbl 0473.35064, MR 0635201, 10.1007/BF01214869 |
Reference:
|
[13] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia, Prague (1967). MR 0227584 |
Reference:
|
[14] Schumacher, K.: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces.Ann. dell'Univ. di Ferrara 54 123-144 (2008). Zbl 1179.35225, MR 2403378, 10.1007/s11565-008-0038-0 |
Reference:
|
[15] Slobodeckiǐ, L. N.: Generalized Sobolev spaces and their application to boundary problems for partial differential equations.Leningrad. Gos. Ped. Inst. Učen. Zap. 197 54-112 (1958). MR 0203222 |
Reference:
|
[16] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton Mathematical Series. 43, Princeton University Press, Princeton, N.J. (1993). Zbl 0821.42001, MR 1232192 |
. |