Article
Keywords:
exponent; digraph; primitivity
Summary:
We consider the primitive two-colored digraphs whose uncolored digraph has $n+s$ vertices and consists of one $n$-cycle and one $(n-3)$-cycle. We give bounds on the exponents and characterizations of extremal two-colored digraphs.
References:
                        
[1] Olesky, D. D., Shader, B. L., Driessche, P. van den: 
Exponents of tuples of nonnegative matrices. Linear Algebra Appl. 356 (2002), 123-134. 
MR 1944682[2] Shader, B. L., Suwilo, S.: 
Exponents of nonnegative matrix pairs. Linear Algebra Appl. 363 (2003), 275-293. 
MR 1969073 | 
Zbl 1019.15013[3] Beasley, L. B., Kirkland, S.: 
A note on $k$-primitive directed graphs. Linear Algebra Appl. 373 (2003), 67-74. 
MR 2022278 | 
Zbl 1026.05037[4] Gao, Yubin, Shao, Yanling: 
Exponents of two-colored digraphs with two cycles. Linear Algebra Appl. 407 (2005), 263-276. 
MR 2161931 | 
Zbl 1073.05041[5] Shao, Yanling, Gao, Yubin, Sun, Liang: 
Exponents of a class of two-colored digraphs. Linear and Multilinear Algebra. 53 (2005), 175-188. 
MR 2150784 | 
Zbl 1065.05042