Previous |  Up |  Next

Article

Title: On the distributive radical of an Archimedean lattice-ordered group (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 687-693
Summary lang: English
.
Category: math
.
Summary: Let $G$ be an Archimedean $\ell $-group. We denote by $G^d$ and $R_D(G)$ the divisible hull of $G$ and the distributive radical of $G$, respectively. In the present note we prove the relation $(R_D(G))^d=R_D(G^d)$. As an application, we show that if $G$ is Archimedean, then it is completely distributive if and only if it can be regularly embedded into a completely distributive vector lattice. (English)
Keyword: Archimedean $\ell $-group
Keyword: divisible hull
Keyword: distributive radical
Keyword: complete distributivity
MSC: 06F20
MSC: 46A40
idZBL: Zbl 1224.06033
idMR: MR2545649
.
Date available: 2010-07-20T15:33:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140509
.
Reference: [1] Birkhoff, G.: Lattice Theory.Revised Edition Providence (1948). Zbl 0033.10103, MR 0029876
Reference: [2] Byrd, R. D., Lloyd, J. T.: Closed subgroups and complete distributivity in lattice-ordered groups.Math. Z. 101 (1967), 123-130. Zbl 0178.02902, MR 0218284, 10.1007/BF01136029
Reference: [3] Darnel, M. R.: Theory of Lattice-Ordered Groups.M. Dekker, Inc. New York-Basel- Hong Kong (1995). Zbl 0810.06016, MR 1304052
Reference: [4] Jakubík, J.: Representation and extension of $\ell$-groups.Czech. Math. J. 13 (1963), 267-283 Russian. MR 0171865
Reference: [5] Jakubík, J.: Distributivity in lattice ordered groups.Czech. Math. J. 22 (1972), 108-125. MR 0325487
Reference: [6] Jakubík, J.: Complete distributivity of lattice ordered groups and of vector lattices.Czech. Math. J. 51 (2001), 889-896. MR 1864049, 10.1023/A:1013781300217
Reference: [7] Lapellere, M. A., Valente, A.: Embedding of Archimedean $\ell$-groups in Riesz spaces.Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 249-254. MR 1628633
Reference: [8] Sikorski, R.: Boolean Algebras.Second Edition Springer Verlag Berlin (1964). Zbl 0123.01303, MR 0126393
.

Files

Files Size Format View
CzechMathJ_59-2009-3_10.pdf 219.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo