Previous |  Up |  Next

Article

Title: Convex-compact sets and Banach discs (English)
Author: Monterde, I.
Author: Montesinos, V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 773-780
Summary lang: English
.
Category: math
.
Summary: Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual $E'$ of a locally convex space $E$ is the $\sigma (E',E)$-closure of the union of countably many $\sigma (E',E)$-relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact. (English)
Keyword: weakly compact sets
Keyword: convex-compact sets
Keyword: Banach discs
MSC: 46A03
MSC: 46A50
idZBL: Zbl 1224.13023
idMR: MR2545655
.
Date available: 2010-07-20T15:39:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140515
.
Reference: [1] Day, M. M.: Normed Linear Spaces.Spriger-Verlag (1973). Zbl 0268.46013, MR 0344849
Reference: [2] Floret, K.: Weakly compact sets.Lecture Notes in Math., Springer-Verlag 801 (1980). Zbl 0437.46006, MR 0576235, 10.1007/BFb0091483
Reference: [3] Grothendieck, A.: Critères de compacité dans les espaces fonctionnels généraux.Amer. J. Math. 74 (1952), 168-186. Zbl 0046.11702, MR 0047313, 10.2307/2372076
Reference: [4] Köthe, G.: Topological Vector Spaces I.Springer-Verlag (1969). MR 0248498
Reference: [5] Pták, V.: A combinatorial lemma on the existence of convex means and its applications to weak compactness.Proc. Symp. Pure Math. VII (Convexity 1963) 437-450. MR 0161128
.

Files

Files Size Format View
CzechMathJ_59-2009-3_16.pdf 255.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo