Previous |  Up |  Next

Article

Title: Topological invariants of isolated complete intersection curve singularities (English)
Author: Pérez, V. H. Jorge
Author: Hernandes, M. E.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 975-987
Summary lang: English
.
Category: math
.
Summary: In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves. (English)
Keyword: topological invariants
Keyword: genus
Keyword: Euler characteristic
Keyword: irreducibility criterion
MSC: 32S50
MSC: 58K65
idZBL: Zbl 1224.32024
idMR: MR2563570
.
Date available: 2010-07-20T15:51:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140529
.
Reference: [1] Arslan, F., Sertöz, S.: Genus calculations of complete intersections.Commun. Algebra 26 (1998), 2463-2471. MR 1627868, 10.1080/00927879808826291
Reference: [2] Buchweitz, R.-O., Greuel, G.-M.: Milnor number and deformation of complex curve singulaties.Invent. Math. 58 (1980), 241-281. MR 0571575, 10.1007/BF01390254
Reference: [3] Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext.Springer New York (1992). MR 1194180
Reference: [4] Greuel, G. M.: Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten.Math. Ann. 214 (1975), 235-266 German. Zbl 0285.14002, MR 0396554, 10.1007/BF01352108
Reference: [5] Harris, J.: On Severi problem.Invent. Math. 84 (1986), 445-461. MR 0837522, 10.1007/BF01388741
Reference: [6] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics 52.Springer New York-Heidelberg-Berlin (1977). MR 0463157
Reference: [7] Hironaka, H.: On the arithmetic genera and the effective genera of algebraic curves.Mem. Coll. Sci., Univ. Kyoto, Ser. A 30 (1957), 177-195. Zbl 0099.15702, MR 0090850, 10.1215/kjm/1250777055
Reference: [8] Kleiman, S. L.: A generalized Teissier-Plücker formula.Contemp. Math. 162 (1994), 249-260. Zbl 0820.14039, MR 1272702, 10.1090/conm/162/01536
Reference: [9] Kline, M.: Mathematical Thought from Ancient to Modern Times.Clarendon Press, Oxford Univ. Press New York (1990). Zbl 0864.01001, MR 0472307
Reference: [10] Looijenga, E. J. N.: Isolated Singular Points on Complete Intersections. London Mathematical Society Lecture Note, Ser. 77.Cambridge University Press Cambridge (1984). MR 0747303
Reference: [11] Mumford, D.: Algebraic Geometry. I: Complex Projective Varieties.Springer Berlin (1995). Zbl 0821.14001, MR 1344216
Reference: [12] Severi, F.: Il Teorema di Riemann-Roch per curve, superficie e varietá. Ergebnisse der Math. Questioni Collegate.Springer Berlin-Göttingen-Heidelberg (1958), Italian. MR 0094357
.

Files

Files Size Format View
CzechMathJ_59-2009-4_8.pdf 273.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo