Previous |  Up |  Next

Article

Title: Bounded linear functionals on the space of Henstock-Kurzweil integrable functions (English)
Author: Lee, Tuo-Yeong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 1005-1017
Summary lang: English
.
Category: math
.
Summary: Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals. (English)
Keyword: Henstock-Kurzweil integral
Keyword: bounded linear functional
Keyword: bounded variation
MSC: 26A39
MSC: 28A35
MSC: 46E30
MSC: 46E99
idZBL: Zbl 1224.26026
idMR: MR2563573
.
Date available: 2010-07-20T15:54:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140532
.
Reference: [1] Alexiewicz, A.: Linear functionals on Denjoy-integrable functions.Colloq. Math. 1 (1948), 289-293. Zbl 0037.32302, MR 0030120, 10.4064/cm-1-4-289-293
Reference: [2] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics Vol. 4, AMS (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004/09
Reference: [3] Hildebrandt, T. H., Schoenberg, I. J.: On linear functional operations and the moment problem for a finite interval in one or several dimensions.The Annals of Mathematics (2) 34 317-328. Zbl 0006.40204, MR 1503109
Reference: [4] Kreyszig, Erwin: Introductory Functional Analysis with Applications.John Wiley & Sons, New York-London-Sydney (1978). Zbl 0368.46014, MR 0467220
Reference: [5] Kurzweil, J.: On multiplication of Perron integrable functions.Czech. Math. J 23 (1973), 542-566. Zbl 0269.26007, MR 0335705
Reference: [6] Peng-Yee, Lee: Lanzhou Lectures on Henstock Integration.World Scientific (1989). MR 1050957
Reference: [7] Peng-Yee, Lee, Výborný, R.: The integral, An Easy Approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000). MR 1756319
Reference: [8] Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee: Characterisation of multipliers for the double Henstock integrals.Bull. Austral. Math Soc. 54 (1996), 441-449. MR 1419607, 10.1017/S0004972700021857
Reference: [9] Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee: On Henstock integrability in Euclidean spaces.Real Anal. Exchange 22 (1996/97), 382-389. MR 1433623
Reference: [10] Tuo-Yeong, Lee: Multipliers for some non-absolute integrals in the Euclidean spaces.Real Anal. Exchange 24 (1998/99), 149-160. MR 1691742
Reference: [11] Tuo-Yeong, Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. London Math. Soc. 87 (2003), 677-700. MR 2005879
Reference: [12] Tuo-Yeong, Lee: A full characterization of multipliers for the strong $\rho$-integral in the Euclidean space.Czech. Math. J. 54 (2004), 657-674. MR 2086723, 10.1007/s10587-004-6415-7
Reference: [13] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral.J. Math. Anal. Appl. 298 (2004), 677-692. MR 2086983, 10.1016/j.jmaa.2004.05.033
Reference: [14] Tuo-Yeong, Lee: A characterisation of multipliers for the Henstock-Kurzweil integral.Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. MR 2138575, 10.1017/S030500410500839X
Reference: [15] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II.J. Math. Anal. Appl. 323 (2006), 741-745. MR 2262241, 10.1016/j.jmaa.2005.10.045
Reference: [16] Tuo-Yeong, Lee: A multidimensional integration by parts formula for the Henstock-Kurzweil integral.Math. Bohem. 133 (2008), 63-74. MR 2400151
Reference: [17] Liu, G. Q.: The dual of the Henstock-Kurzweil space.Real Anal. Exchange 22 (1996/97), 105-121. Zbl 0879.26046, MR 1433600
Reference: [18] Mikusiński, Piotr, Ostaszewski, K.: The space of Henstock integrable functions II.In New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, Editors), Lecture Notes in Math. 1419 (Springer-Verlag, Berlin, Heideberg, New York 1990) 136-149. MR 1051926
Reference: [19] Ostaszewski, K. M.: The space of Henstock integrable functions of two variables.Internat. J. Math. and Math. Sci. 11 (1988), 15-22. Zbl 0662.26003, MR 0918213, 10.1155/S0161171288000043
Reference: [20] Sargent, W. L. C.: On the integrability of a product.J. London Math. Soc. 23 (1948), 28-34. Zbl 0031.29201, MR 0026113, 10.1112/jlms/s1-23.1.28
Reference: [21] Sargent, W. L. C.: On linear functionals in spaces of conditionally integrable functions.Quart. J. Math., Oxford Ser. 1 (1950), 288-298. Zbl 0039.11801, MR 0039919, 10.1093/qmath/1.1.288
.

Files

Files Size Format View
CzechMathJ_59-2009-4_11.pdf 271.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo