Title:
|
Composition-diamond lemma for modules (English) |
Author:
|
Chen, Yuqun |
Author:
|
Chen, Yongshan |
Author:
|
Zhong, Chanyan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
59-76 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and "double-free" left modules (that is, free modules over a free algebra). We first give Chibrikov's Composition-Diamond lemma for modules and then we show that Kang-Lee's Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $sl_2$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules. (English) |
Keyword:
|
Gröbner-Shirshov basis |
Keyword:
|
module |
Keyword:
|
Lie algebra |
Keyword:
|
Kac-Moody algebra |
Keyword:
|
conformal algebra |
Keyword:
|
Sabinin algebra |
MSC:
|
13P10 |
MSC:
|
16D10 |
MSC:
|
16S15 |
MSC:
|
17A01 |
MSC:
|
17B67 |
idZBL:
|
Zbl 1224.16046 |
idMR:
|
MR2595070 |
. |
Date available:
|
2010-07-20T16:14:20Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140549 |
. |
Reference:
|
[1] Bokut, L. A.: Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras.Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972), 1173-1219. MR 0330250 |
Reference:
|
[2] Bokut, L. A.: Imbeddings into simple associative algebras.Algebra i Logika. 15 (1976), 117-142. MR 0506423 |
Reference:
|
[3] Bokut, L. A., Chen, Yuqun: Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov.Southeast Asian Bull. Math. 31 (2007), 1057-1076. Zbl 1150.17008, MR 2386984 |
Reference:
|
[4] Bokut, L. A., Fong, Y., Ke, W.-F.: Gröbner-Shirshov bases and composition lemma for associative conformal algebras: an example.Contemporary Mathematics N264 (2000), 63-91. MR 1800688, 10.1090/conm/264/04211 |
Reference:
|
[5] Bokut, L. A., Klein, A. A.: Serre relations and Gröbner-Shirshov bases for simple Lie algebras. I, II.Internat. J. Algebra Comput. 6 (1996), 389-400, 401-412. MR 1414346, 10.1142/S0218196796000222 |
Reference:
|
[6] Bokut, L. A., Klein, A. A.: Gröbner-Shirshov bases for exceptional Lie algebras. I.Ring Theory. Selected Papers from the Conference Held in Miskolc, July 15-20, 1996, Amsterdam (1998) 51-57. MR 1653694 |
Reference:
|
[7] Bokut, L. A., Klein, A. A.: Gröbner-Shirshov bases for exceptional Lie algebras $E_6$, $E_7$, and $E_8$.Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 37-46. |
Reference:
|
[8] Bokut, L. A., Malcolson, P.: Gröbner-Shirshov bases for quantum enveloping algebras.Israel J. Math. 96 (1996), 97-113. MR 1432728, 10.1007/BF02785535 |
Reference:
|
[9] Bokut, L. A., Malcolson, P.: Gröbner-Shirshov bases for relations of a Lie algebra and its enveloping algebra.Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 47-54. MR 1733167 |
Reference:
|
[10] Bokut, L. A., Kang, S.-J., Lee, K.-H., Malcolmson, P.: Gröbner-Shirshov bases for Lie super-algebras and their universal enveloping algebras.J. Algebra. 217 (1999), 461-495. MR 1700511, 10.1006/jabr.1998.7810 |
Reference:
|
[11] Chibrikov, E. S.: On free Lie conformal algebras.Vestnik Novosibirsk State University 4 (2004), 65-83. |
Reference:
|
[12] Cohn, P. M.: Free Rings and Their Relations.Academic Press, second edition (1985). Zbl 0659.16001, MR 0800091 |
Reference:
|
[13] Humphreys, James E.: Introduction to Lie Algebras and Representation Theory.Springer-Verlag (2000), 1970. Zbl 0447.17002, MR 0499562 |
Reference:
|
[14] Kac, V.-G.: Infinite-Dimensional Lie Algebras.Cambridge University Press, Cambridge, third edition (1990). Zbl 0716.17022 |
Reference:
|
[15] Kac, V.-G.: Vertex Algebra for Beginners.University lecture series., 10, AMS, Providence, RI (1997). MR 1417941 |
Reference:
|
[16] Kang, S.-J., Lee, K.-H.: Gröbner-Shirshov bases for representation theory.J. Korean Math. Soc. 37 (2000), 55-72. Zbl 0979.16010, MR 1749085 |
Reference:
|
[17] Kang, S.-J., Lee, K.-H.: Gröbner-Shirshov bases for irreducible $sl_{n+1}$-modules.J. Algebra 232 (2000), 1-20. Zbl 1023.17001, MR 1783910, 10.1006/jabr.2000.8381 |
Reference:
|
[18] Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H.: Hecke algebras, Specht modules and Gröbner-Shirshov bases.J. Algebra 252 (2002), 258-292. Zbl 1038.20005, MR 1925138, 10.1016/S0021-8693(02)00071-6 |
Reference:
|
[19] Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H.: Representations of Ariki-Koike algebras and Gröbner-Shirshov bases.Proc. London Math. Soc. 89 (2004), 54-70. Zbl 1065.20008, MR 2063659 |
Reference:
|
[20] Lalonde, P., Ram, A.: Standard Lyndon bases of Lie algebras and enveloping algebras.Trans. Amer. Math. Soc. 347 (1995), 1821-1830. Zbl 0833.17003, MR 1273505, 10.1090/S0002-9947-1995-1273505-4 |
Reference:
|
[21] Perez-Izquierdo, J. M.: Algebras, hyperalgebras, nonassociative bialgebras and loops.Advances in Mathematics 208 (2007), 834-876. Zbl 1186.17003, MR 2304338, 10.1016/j.aim.2006.04.001 |
Reference:
|
[22] Poroshenko, E. N.: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $A^{(1)}_n$.Commun. Algebra. 30 (2002), 2617-2637. Zbl 1007.17017, MR 1908229, 10.1081/AGB-120003979 |
Reference:
|
[23] Poroshenko, E. N.: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $C^{(1)}_n$ and $D^{(1)}_n$.Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 2 (2002), 58-70. MR 2058346 |
Reference:
|
[24] Poroshenko, E. N.: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $B^{(1)}_n$.Int. J. Math. Game Theory Algebra. 13 (2003), 117-128. MR 2058346 |
Reference:
|
[25] Roitman, M.: On the free conformal and vertex algebras.J. Algebra. 217 (1999), 496-527. MR 1700512, 10.1006/jabr.1998.7834 |
Reference:
|
[26] Shirshov, A. I.: Some algorithmic problem for Lie algebras.Sibirsk. Mat. Z. 3 (1962), 292-296 Russian; English translation in SIGSAM Bull. 33 (1999), 3-6. |
. |