Title:
|
On sequential properties of Banach spaces, spaces of measures and densities (English) |
Author:
|
Borodulin-Nadzieja, Piotr |
Author:
|
Plebanek, Grzegorz |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
381-399 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of {\it weak}* continuity of seminorms on the unit ball of $E^*$. \endgraf We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the {\it weak}* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers. (English) |
Keyword:
|
Gelfand-Phillips property |
Keyword:
|
Mazur property |
Keyword:
|
generalized density |
MSC:
|
46B26 |
MSC:
|
46E15 |
MSC:
|
46E27 |
idZBL:
|
Zbl 1224.46031 |
idMR:
|
MR2657956 |
. |
Date available:
|
2010-07-20T16:46:55Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140576 |
. |
Reference:
|
[1] Balcar, B., Pelant, J., Simon, P.: The space of ultrafilters on N covered by nowhere dense sets.Fundam. Math. 110 (1980), 11-24. Zbl 0568.54004, MR 0600576, 10.4064/fm-110-1-11-24 |
Reference:
|
[2] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges.Academic Press London (1983). MR 0751777 |
Reference:
|
[3] Blass, A.: Combinatorial cardinal characteristics of the continuum.(to appear) as a chapter in Handbook of Set Theory. MR 2768685 |
Reference:
|
[4] Borodulin-Nadzieja, P.: On measures on minimally generated Boolean algebras.Topology Appl. 154 (2007), 3107-3124. MR 2364639, 10.1016/j.topol.2007.03.014 |
Reference:
|
[5] Bourgain, J., Diestel, J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55-58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105 |
Reference:
|
[6] Drewnowski, L.: On Banach spaces with the Gelfand-Phillips property.Math. Z. 193 (1986), 405-411. Zbl 0629.46020, MR 0862887, 10.1007/BF01229808 |
Reference:
|
[7] Edgar, G. A.: Measurability in a Banach space II.Indiana Univ. Math. J. 28 (1979), 559-579. Zbl 0418.46034, MR 0542944, 10.1512/iumj.1979.28.28039 |
Reference:
|
[8] Farkas, B., Soukup, L.: More on cardinal invariants of analytic $P$-ideals.Preprint. MR 2537837 |
Reference:
|
[9] Freedman, W.: An extension property for Banach spaces.Colloq. Math. 91 (2002), 167-182. Zbl 1028.46020, MR 1898630, 10.4064/cm91-2-2 |
Reference:
|
[10] Howard, J.: On {\it weak}* separable subsets of dual Banach spaces.Missouri J. Math. Sci 7 (1995), 116-118. MR 1455281, 10.35834/1995/0703116 |
Reference:
|
[11] Hernandez-Hernandez, F., Hrusák, M.: Cardinal invariants of $P$-ideals.Preprint. |
Reference:
|
[12] Kalenda, O.: Valdivia compact spaces in topology and Banach space theory.Extr. Math. 15 (2000), 1-85. Zbl 0983.46021, MR 1792980 |
Reference:
|
[13] Kalenda, O.: (I)-envelopes of unit balls and James' characterization of reflexivity.Stud. Math. 182 (2007), 29-40. Zbl 1139.46018, MR 2326490, 10.4064/sm182-1-2 |
Reference:
|
[14] Koppelberg, S.: Minimally generated Boolean algebras.Order 5 (1989), 393-406. Zbl 0676.06019, MR 1010388, 10.1007/BF00353658 |
Reference:
|
[15] Koppelberg, S.: Counterexamples in minimally generated Boolean algebras.Acta Univ. Carol. Math. Phys. 29 (1988), 27-36. Zbl 0676.06020, MR 0983448 |
Reference:
|
[16] Koszmider, P.: Forcing minimal extensions of Boolean algebras.Trans. Am. Math. Soc. 351 (1999), 3073-3117. Zbl 0922.03071, MR 1467471, 10.1090/S0002-9947-99-02145-5 |
Reference:
|
[17] Leung, D. H.: A Gelfand-Phillips property with respect to the weak topology.Math. Nachr. 149 (1990), 177-181. Zbl 0765.46007, MR 1124803, 10.1002/mana.19901490114 |
Reference:
|
[18] Leung, D. H.: On Banach spaces with Mazur's property.Glasg. Math. J. 33 (1991), 51-54. Zbl 0745.46021, MR 1089953, 10.1017/S0017089500008028 |
Reference:
|
[19] Mazur, S.: On continuous mappings on Cartesian products.Fundam. Math. 39 (1952), 229-238. MR 0055663, 10.4064/fm-39-1-229-238 |
Reference:
|
[20] Mercourakis, S.: Some remarks on countably determined measure and uniform distribution of sequences.Monatsh. Math. 121 (1996), 79-111. MR 1375642, 10.1007/BF01299640 |
Reference:
|
[21] Plebanek, G.: On the space of continuous functions on a dydadic set.Mathematika 38 (1991), 42-49. MR 1116683, 10.1112/S0025579300006422 |
Reference:
|
[22] Plebanek, G.: On some properties of Banach spaces of continuous functions.Séminaire d'initiation a l'analyse 1991/92, Vol. 31 G. Choquet et al. Université Pierre et Marie Curie Paris (1994). Zbl 0876.46016 |
Reference:
|
[23] Plebanek, G.: On Mazur property and realcompactness in $C(K)$.In: Topology, Measure and Fractals, Math. Res. Vol. 66 C. Bandt et al. Akademie Verlag (1992). Zbl 0850.46019, MR 1226275 |
Reference:
|
[24] Plebanek, G.: On Pettis integrals with separable range.Colloq. Math. 64 (1993), 71-78. Zbl 0823.28005, MR 1201444, 10.4064/cm-64-1-71-78 |
Reference:
|
[25] Plebanek, G.: Compact spaces that result from adequate families of sets.Topology Appl. 65 (1995), 257-270 Erratum: Topology Appl. 72 (1996), 99. Zbl 0869.54003, MR 1357868, 10.1016/0166-8641(95)00006-3 |
Reference:
|
[26] Sinha, D. P., Arora, K. K.: On the Gelfand-Phillips property in Banach spaces with PRI.Collect. Math. 48 (1997), 347-354. Zbl 0903.46015, MR 1475810 |
Reference:
|
[27] Talagrand, M.: Pettis integral and measure theory.Mem. Am. Math. Soc. 307 (1984). Zbl 0582.46049, MR 0756174 |
Reference:
|
[28] Schlumprecht, T.: Limited sets in $C(K)$-spaces and examples concerning the Gelfand-Phillips property.Math. Nachr. 157 (1992), 51-64. Zbl 0797.46013, MR 1233046, 10.1002/mana.19921570105 |
Reference:
|
[29] Wilansky, A.: Mazur spaces.Int. J. Math. Sci. 4 (1981), 39-53. Zbl 0466.46005, MR 0606656, 10.1155/S0161171281000021 |
. |