Previous |  Up |  Next

Article

Title: On sequential properties of Banach spaces, spaces of measures and densities (English)
Author: Borodulin-Nadzieja, Piotr
Author: Plebanek, Grzegorz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 2
Year: 2010
Pages: 381-399
Summary lang: English
.
Category: math
.
Summary: We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of {\it weak}* continuity of seminorms on the unit ball of $E^*$. \endgraf We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the {\it weak}* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers. (English)
Keyword: Gelfand-Phillips property
Keyword: Mazur property
Keyword: generalized density
MSC: 46B26
MSC: 46E15
MSC: 46E27
idZBL: Zbl 1224.46031
idMR: MR2657956
.
Date available: 2010-07-20T16:46:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140576
.
Reference: [1] Balcar, B., Pelant, J., Simon, P.: The space of ultrafilters on N covered by nowhere dense sets.Fundam. Math. 110 (1980), 11-24. Zbl 0568.54004, MR 0600576, 10.4064/fm-110-1-11-24
Reference: [2] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges.Academic Press London (1983). MR 0751777
Reference: [3] Blass, A.: Combinatorial cardinal characteristics of the continuum.(to appear) as a chapter in Handbook of Set Theory. MR 2768685
Reference: [4] Borodulin-Nadzieja, P.: On measures on minimally generated Boolean algebras.Topology Appl. 154 (2007), 3107-3124. MR 2364639, 10.1016/j.topol.2007.03.014
Reference: [5] Bourgain, J., Diestel, J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55-58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105
Reference: [6] Drewnowski, L.: On Banach spaces with the Gelfand-Phillips property.Math. Z. 193 (1986), 405-411. Zbl 0629.46020, MR 0862887, 10.1007/BF01229808
Reference: [7] Edgar, G. A.: Measurability in a Banach space II.Indiana Univ. Math. J. 28 (1979), 559-579. Zbl 0418.46034, MR 0542944, 10.1512/iumj.1979.28.28039
Reference: [8] Farkas, B., Soukup, L.: More on cardinal invariants of analytic $P$-ideals.Preprint. MR 2537837
Reference: [9] Freedman, W.: An extension property for Banach spaces.Colloq. Math. 91 (2002), 167-182. Zbl 1028.46020, MR 1898630, 10.4064/cm91-2-2
Reference: [10] Howard, J.: On {\it weak}* separable subsets of dual Banach spaces.Missouri J. Math. Sci 7 (1995), 116-118. MR 1455281, 10.35834/1995/0703116
Reference: [11] Hernandez-Hernandez, F., Hrusák, M.: Cardinal invariants of $P$-ideals.Preprint.
Reference: [12] Kalenda, O.: Valdivia compact spaces in topology and Banach space theory.Extr. Math. 15 (2000), 1-85. Zbl 0983.46021, MR 1792980
Reference: [13] Kalenda, O.: (I)-envelopes of unit balls and James' characterization of reflexivity.Stud. Math. 182 (2007), 29-40. Zbl 1139.46018, MR 2326490, 10.4064/sm182-1-2
Reference: [14] Koppelberg, S.: Minimally generated Boolean algebras.Order 5 (1989), 393-406. Zbl 0676.06019, MR 1010388, 10.1007/BF00353658
Reference: [15] Koppelberg, S.: Counterexamples in minimally generated Boolean algebras.Acta Univ. Carol. Math. Phys. 29 (1988), 27-36. Zbl 0676.06020, MR 0983448
Reference: [16] Koszmider, P.: Forcing minimal extensions of Boolean algebras.Trans. Am. Math. Soc. 351 (1999), 3073-3117. Zbl 0922.03071, MR 1467471, 10.1090/S0002-9947-99-02145-5
Reference: [17] Leung, D. H.: A Gelfand-Phillips property with respect to the weak topology.Math. Nachr. 149 (1990), 177-181. Zbl 0765.46007, MR 1124803, 10.1002/mana.19901490114
Reference: [18] Leung, D. H.: On Banach spaces with Mazur's property.Glasg. Math. J. 33 (1991), 51-54. Zbl 0745.46021, MR 1089953, 10.1017/S0017089500008028
Reference: [19] Mazur, S.: On continuous mappings on Cartesian products.Fundam. Math. 39 (1952), 229-238. MR 0055663, 10.4064/fm-39-1-229-238
Reference: [20] Mercourakis, S.: Some remarks on countably determined measure and uniform distribution of sequences.Monatsh. Math. 121 (1996), 79-111. MR 1375642, 10.1007/BF01299640
Reference: [21] Plebanek, G.: On the space of continuous functions on a dydadic set.Mathematika 38 (1991), 42-49. MR 1116683, 10.1112/S0025579300006422
Reference: [22] Plebanek, G.: On some properties of Banach spaces of continuous functions.Séminaire d'initiation a l'analyse 1991/92, Vol. 31 G. Choquet et al. Université Pierre et Marie Curie Paris (1994). Zbl 0876.46016
Reference: [23] Plebanek, G.: On Mazur property and realcompactness in $C(K)$.In: Topology, Measure and Fractals, Math. Res. Vol. 66 C. Bandt et al. Akademie Verlag (1992). Zbl 0850.46019, MR 1226275
Reference: [24] Plebanek, G.: On Pettis integrals with separable range.Colloq. Math. 64 (1993), 71-78. Zbl 0823.28005, MR 1201444, 10.4064/cm-64-1-71-78
Reference: [25] Plebanek, G.: Compact spaces that result from adequate families of sets.Topology Appl. 65 (1995), 257-270 Erratum: Topology Appl. 72 (1996), 99. Zbl 0869.54003, MR 1357868, 10.1016/0166-8641(95)00006-3
Reference: [26] Sinha, D. P., Arora, K. K.: On the Gelfand-Phillips property in Banach spaces with PRI.Collect. Math. 48 (1997), 347-354. Zbl 0903.46015, MR 1475810
Reference: [27] Talagrand, M.: Pettis integral and measure theory.Mem. Am. Math. Soc. 307 (1984). Zbl 0582.46049, MR 0756174
Reference: [28] Schlumprecht, T.: Limited sets in $C(K)$-spaces and examples concerning the Gelfand-Phillips property.Math. Nachr. 157 (1992), 51-64. Zbl 0797.46013, MR 1233046, 10.1002/mana.19921570105
Reference: [29] Wilansky, A.: Mazur spaces.Int. J. Math. Sci. 4 (1981), 39-53. Zbl 0466.46005, MR 0606656, 10.1155/S0161171281000021
.

Files

Files Size Format View
CzechMathJ_60-2010-2_7.pdf 332.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo