Previous |  Up |  Next

Article

Title: On zeros of characters of finite groups (English)
Author: Zhang, Jinshan
Author: Shen, Zhencai
Author: Liu, Dandan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 801-816
Summary lang: English
.
Category: math
.
Summary: For a finite group $G$ and a non-linear irreducible complex character $\chi $ of $G$ write $\upsilon (\chi )=\{g\in G\mid \chi (g)=0\}$. In this paper, we study the finite non-solvable groups $G$ such that $\upsilon (\chi )$ consists of at most two conjugacy classes for all but one of the non-linear irreducible characters $\chi $ of $G$. In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable $\varphi $-groups. As a corollary, we answer Research Problem $2$ in [Y. Berkovich and L. Kazarin: Finite groups in which the zeros of every non-linear irreducible character are conjugate modulo its kernel. Houston J. Math.\ 24 (1998), 619--630.] posed by Y. Berkovich and L. Kazarin. (English)
Keyword: finite groups
Keyword: characters
Keyword: zeros
MSC: 20C15
idZBL: Zbl 1208.20005
idMR: MR2672416
.
Date available: 2010-07-20T17:20:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140605
.
Reference: [1] Berkovich, Y., Kazarin, L.: Finite groups in which the zeros of every nonlinear irreducible character are conjugate modulo its kernel.Houston J. Math. 24 (1998), 619-630. Zbl 0969.20004, MR 1686628
Reference: [2] Bianchi, M., Chillag, D., Gillio, A.: Finite groups in which every irreducible character vanishes on at most two conjugacy classes.Houston J. Math. 26 (2000), 451-461. Zbl 0986.20006, MR 1811932
Reference: [3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups.Oxford Univ. Press, Oxford and New York (1985). Zbl 0568.20001, MR 0827219
Reference: [4] Gagola, S. M.: Characters vanishing on all but two conjugacy classes.Pacific J. Math. 109 (1983), 363-385. Zbl 0536.20005, MR 0721927, 10.2140/pjm.1983.109.363
Reference: [5] Gallagher, P. X.: Zeros of characters of finite groups.J. Algebra 4 (1965), 42-45. MR 0200356, 10.1016/0021-8693(66)90048-2
Reference: [6] Gorenstein, D.: Finite Groups.Harper-Row (1968). Zbl 0185.05701, MR 0231903
Reference: [7] Huppert, B.: Endliche Gruppen I.Springer-Verlag, Berlin-Heidelberg-New York (1967). Zbl 0217.07201, MR 0224703
Reference: [8] Huppert, B., Blackburn, N.: Finite groups III.Springer-Verlag, Berlin, New York (1982). Zbl 0514.20002, MR 0662826
Reference: [9] Isaacs, I. M.: Character Theory of Finite Groups.Academic Press, New York (1976). Zbl 0337.20005, MR 0460423
Reference: [10] Isaacs, I. M.: Coprime group actions fixing all nonlinear irreducible characters.Canada J. Math. 41 (1989), 68-82. Zbl 0686.20002, MR 0996718, 10.4153/CJM-1989-003-2
Reference: [11] Kuisch, E. B., Waall, R. W. Van Der: Homogeneous character induction.J. Algebra 149 (1992), 454-471. MR 1172440, 10.1016/0021-8693(92)90027-J
Reference: [12] Macdonald, I. D.: Some $p$-groups of Frobenius and extra-special type.Israel J. Math. 40 (1981), 350-364. Zbl 0486.20016, MR 0654591, 10.1007/BF02761376
Reference: [13] Manz, O.: Endliche auflosbare Gruppen deren samtliche charactergrade primzahl-potenzen sind.J. Algebra 94 (1985), 211-255. MR 0789547, 10.1016/0021-8693(85)90210-8
Reference: [14] Manz, O., Staszewski, R.: Some applications of a fundamental theorem by Gluck and Wolf in the character theory of finite groups.Math. Z. 192 (1986), 383-389. Zbl 0606.20011, MR 0845210, 10.1007/BF01164012
Reference: [15] Manz, O., Wolf, T. R.: Representations of solvable groups.Cambridge University Press, Cambridge (1993). Zbl 0928.20008, MR 1261638
Reference: [16] Mazurov, V. D.: Groups containing a self-centralizing subgroup of order $3$.Algebra and Logic 42 (2003), 29-36. Zbl 1035.20025, MR 1988023, 10.1023/A:1022676707499
Reference: [17] Noritzsch, T.: Groups having three irreducible character degrees.J. Algebra 175 (1995), 767-798. MR 1341745, 10.1006/jabr.1995.1213
Reference: [18] Qian, G. H., Shi, W. J.: A characterization of $ L_2(2^f)$ in terms of the number of character zeros.Contributions to Algebra and Geometry 1 (2009), 1-9. MR 2499777
Reference: [19] Qian, G. H., Shi, W. J., You, X. Z.: Conjugacy classes outside a normal subgroup.Comm. Algebra 32 (2004), 4809-4820. Zbl 1094.20013, MR 2111598, 10.1081/AGB-200039286
Reference: [20] Ren, Y. C., Zhang, J. S.: On zeros of characters of finite groups and solvable $\varphi$-groups.Adv. Math. (China) 37 (2008), 426-436. MR 2463235
Reference: [21] Seitz, G.: Finite groups having only one irreducible representation of degree greater than one.Proc. Amer. Soc. 19 (1968), 459-461. Zbl 0244.20010, MR 0222160, 10.1090/S0002-9939-1968-0222160-X
Reference: [22] Suzuki, M.: Finite groups with nilpotent centralizers.Soc. Trans. Amer. Math. Soc. 99 (1961), 425-470. Zbl 0101.01604, MR 0131459, 10.1090/S0002-9947-1961-0131459-5
Reference: [23] Veralopez, A., Veralopez, J.: Classification of finite groups according to the number of conjugacy classes.Israel J. Math. 51 (1985), 305-338. MR 0804489, 10.1007/BF02764723
Reference: [24] Willems, W.: Blocks of defect zero in finite simple groups.J. Algebra 113 (1988), 511-522. Zbl 0653.20014, MR 0929777, 10.1016/0021-8693(88)90176-7
Reference: [25] Wong, W. J.: Finite groups with a self-centralizing subgroup of order $4$.J. Austral. Math. Soc. 7 (1967), 570-576. Zbl 0203.02902, MR 0220821, 10.1017/S1446788700004511
Reference: [26] Zhang, J. S., Shi, J. T., Shen, Z. C.: Finite groups whose irreducible characters vanish on at most three conjugacy classes.(to appear) in J. Group Theory. MR 2736158
Reference: [27] Zhang, J. S., Shi, W. J.: Two dual questions on zeros of characters of finite groups.J. Group Theory. 11 (2008), 697-708. Zbl 1159.20010, MR 2446151, 10.1515/JGT.2008.045
.

Files

Files Size Format View
CzechMathJ_60-2010-3_14.pdf 304.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo