Title:
|
Oscillation of second order neutral delay differential equations (English) |
Author:
|
Džurina, J. |
Author:
|
Hudáková, D. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
134 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
31-38 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We establish some new oscillation criteria for the second order neutral delay differential equation $$ [r(t)|[x(t)+p(t)x[\tau (t)]]'|^{\alpha -1} [x(t)+ p(t)x[\tau (t)]]']' +\,q(t)f(x[\sigma (t)])=0. $$ The obtained results supplement those of Dzurina and Stavroulakis, Sun and Meng, Xu and Meng, Baculíková and Lacková. We also make a slight improvement of one assumption in the paper of Xu and Meng. (English) |
Keyword:
|
differential equation |
Keyword:
|
oscillation |
Keyword:
|
second order |
Keyword:
|
delay |
Keyword:
|
neutral type |
Keyword:
|
integral averaging method |
MSC:
|
34C10 |
idZBL:
|
Zbl 1212.34190 |
idMR:
|
MR2504685 |
DOI:
|
10.21136/MB.2009.140637 |
. |
Date available:
|
2010-07-20T17:45:58Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140637 |
. |
Reference:
|
[1] Agarwal, R. P., Shieh, S. L., Yeh, C. C.: Oscillation criteria for second-order retarded differential equations.Math. Comput. Modelling 26 (1997), 1-11. Zbl 0902.34061, MR 1480601, 10.1016/S0895-7177(97)00141-6 |
Reference:
|
[2] Baculíková, B., Lacková, D.: Oscillation criteria for second order retarded differential equations.Proc. of CDDEA 2006, Studies of the University of \v Zilina 20 (2006), 11-18. MR 2380247 |
Reference:
|
[3] Chern, J. L., Lian, W. Ch., Yeh, C. C.: Oscillation criteria for second order half-linear differential equations with functional arguments.Publ. Math. Debrecen 48 (1996), 209-216. MR 1394842 |
Reference:
|
[4] Džurina, J., Stavroulakis, I. P.: Oscillation criteria for second-order delay differential equations.Appl. Math. Comput. 140 (2003), 445-453. Zbl 1043.34071, MR 1953915, 10.1016/S0096-3003(02)00243-6 |
Reference:
|
[5] Elbert, A.: A half-linear second order differential equation.Colloq. Math. Soc. Bolyai 30: Qualitative Theory of Differential Equations (Szeged) (1979), 153-180. MR 0680591 |
Reference:
|
[6] Elbert, A.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations.Lecture Notes in Math., Ordinary and Partial Differential Equations 964 (1982), 187-212. Zbl 0528.34034, MR 0693113, 10.1007/BFb0064999 |
Reference:
|
[7] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities.Second ed., Cambridge University Press, Cambridge (1952). Zbl 0047.05302, MR 0046395 |
Reference:
|
[8] Kusano, T., Naito, Y., Ogata, A.: Strong oscillation and nonoscillation of quasilinear differential equations of second order.Differ. Equ. Dyn. Syst. 2 (1994), 1-10. MR 1386034 |
Reference:
|
[9] Kusano, T., Yoshida, N.: Nonoscillation theorems for a class of quasilinear differential equations of second order.J. Math. Anal. Appl. 189 (1995), 115-127. MR 1312033, 10.1006/jmaa.1995.1007 |
Reference:
|
[10] Li, W. T.: Interval oscillation of the second-order half-linear functional differential equations.Appl. Math. Comput. 155 (2004), 451-468. MR 2077061, 10.1016/S0096-3003(03)00790-2 |
Reference:
|
[11] Mirzov, D. D.: On the oscillation of a system of nonlinear differential equations.Diferencialnye Uravnenija 9 (1973), 581-583 Russian. MR 0315209 |
Reference:
|
[12] Mirzov, D. D.: On some analogs of Sturm's and Kneser's theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418-425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7 |
Reference:
|
[13] Mirzov, D. D.: On the oscillation of solutions of a system of differential equations.Mat. Zametki 23 (1978), 401-404 Russian. MR 0492540 |
Reference:
|
[14] Sun, Y. G., Meng, F. W.: Note on the paper of Džurina and Stavroulakis.Appl. Math. Comput. 174 (2006), 1634-1641. Zbl 1096.34048, MR 2220639, 10.1016/j.amc.2005.07.008 |
Reference:
|
[15] Xu, R., Meng, F. W.: Some new oscillation criteria for second order quasi-linear neutral delay differential equations.Appl. Math. Comput. 182 (2006), 797-803. Zbl 1115.34341, MR 2292088, 10.1016/j.amc.2006.04.042 |
. |