Previous |  Up |  Next

Article

Title: Oscillation of second order neutral delay differential equations (English)
Author: Džurina, J.
Author: Hudáková, D.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 1
Year: 2009
Pages: 31-38
Summary lang: English
.
Category: math
.
Summary: We establish some new oscillation criteria for the second order neutral delay differential equation $$ [r(t)|[x(t)+p(t)x[\tau (t)]]'|^{\alpha -1} [x(t)+ p(t)x[\tau (t)]]']' +\,q(t)f(x[\sigma (t)])=0. $$ The obtained results supplement those of Dzurina and Stavroulakis, Sun and Meng, Xu and Meng, Baculíková and Lacková. We also make a slight improvement of one assumption in the paper of Xu and Meng. (English)
Keyword: differential equation
Keyword: oscillation
Keyword: second order
Keyword: delay
Keyword: neutral type
Keyword: integral averaging method
MSC: 34C10
idZBL: Zbl 1212.34190
idMR: MR2504685
DOI: 10.21136/MB.2009.140637
.
Date available: 2010-07-20T17:45:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140637
.
Reference: [1] Agarwal, R. P., Shieh, S. L., Yeh, C. C.: Oscillation criteria for second-order retarded differential equations.Math. Comput. Modelling 26 (1997), 1-11. Zbl 0902.34061, MR 1480601, 10.1016/S0895-7177(97)00141-6
Reference: [2] Baculíková, B., Lacková, D.: Oscillation criteria for second order retarded differential equations.Proc. of CDDEA 2006, Studies of the University of \v Zilina 20 (2006), 11-18. MR 2380247
Reference: [3] Chern, J. L., Lian, W. Ch., Yeh, C. C.: Oscillation criteria for second order half-linear differential equations with functional arguments.Publ. Math. Debrecen 48 (1996), 209-216. MR 1394842
Reference: [4] Džurina, J., Stavroulakis, I. P.: Oscillation criteria for second-order delay differential equations.Appl. Math. Comput. 140 (2003), 445-453. Zbl 1043.34071, MR 1953915, 10.1016/S0096-3003(02)00243-6
Reference: [5] Elbert, A.: A half-linear second order differential equation.Colloq. Math. Soc. Bolyai 30: Qualitative Theory of Differential Equations (Szeged) (1979), 153-180. MR 0680591
Reference: [6] Elbert, A.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations.Lecture Notes in Math., Ordinary and Partial Differential Equations 964 (1982), 187-212. Zbl 0528.34034, MR 0693113, 10.1007/BFb0064999
Reference: [7] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities.Second ed., Cambridge University Press, Cambridge (1952). Zbl 0047.05302, MR 0046395
Reference: [8] Kusano, T., Naito, Y., Ogata, A.: Strong oscillation and nonoscillation of quasilinear differential equations of second order.Differ. Equ. Dyn. Syst. 2 (1994), 1-10. MR 1386034
Reference: [9] Kusano, T., Yoshida, N.: Nonoscillation theorems for a class of quasilinear differential equations of second order.J. Math. Anal. Appl. 189 (1995), 115-127. MR 1312033, 10.1006/jmaa.1995.1007
Reference: [10] Li, W. T.: Interval oscillation of the second-order half-linear functional differential equations.Appl. Math. Comput. 155 (2004), 451-468. MR 2077061, 10.1016/S0096-3003(03)00790-2
Reference: [11] Mirzov, D. D.: On the oscillation of a system of nonlinear differential equations.Diferencialnye Uravnenija 9 (1973), 581-583 Russian. MR 0315209
Reference: [12] Mirzov, D. D.: On some analogs of Sturm's and Kneser's theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418-425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7
Reference: [13] Mirzov, D. D.: On the oscillation of solutions of a system of differential equations.Mat. Zametki 23 (1978), 401-404 Russian. MR 0492540
Reference: [14] Sun, Y. G., Meng, F. W.: Note on the paper of Džurina and Stavroulakis.Appl. Math. Comput. 174 (2006), 1634-1641. Zbl 1096.34048, MR 2220639, 10.1016/j.amc.2005.07.008
Reference: [15] Xu, R., Meng, F. W.: Some new oscillation criteria for second order quasi-linear neutral delay differential equations.Appl. Math. Comput. 182 (2006), 797-803. Zbl 1115.34341, MR 2292088, 10.1016/j.amc.2006.04.042
.

Files

Files Size Format View
MathBohem_134-2009-1_3.pdf 227.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo