Previous |  Up |  Next

Article

Title: On the behavior near the origin of double sine series with monotone coefficients (English)
Author: Krasniqi, Xhevat Z.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 3
Year: 2009
Pages: 255-273
Summary lang: English
.
Category: math
.
Summary: In this paper we obtain estimates of the sum of double sine series near the origin, with monotone coefficients tending to zero. In particular (if the coefficients $a_{k,l}$ satisfy certain conditions) the following order equality is proved $$ g(x,y)\sim mna_{m,n}+\frac mn\sum _{l=1}^{n-1}la_{m,l}+\frac nm\sum _{k=1}^{m-1}ka_{k,n}+\frac 1{mn}\sum _{l=1}^{n-1}\sum _{k=1}^{m-1}kla_{k,l}, $$ where $x\in (\frac {\pi }{m+1}, \frac {\pi }m]$, $ y\in (\frac {\pi }{n+1}, \frac {\pi }n]$, $ m, n=1,2,\dots $. (English)
Keyword: double sine series
Keyword: sum of a double sine series with monotone coefficients
MSC: 42A16
MSC: 42A20
idZBL: Zbl 1212.42006
idMR: MR2561305
DOI: 10.21136/MB.2009.140660
.
Date available: 2010-07-20T18:02:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140660
.
Reference: [1] Young, W. H.: On the mode of oscillation of a Fourier series and of its allied series.Proc. London Math. Soc. 12 (1913), 433-452 \JFM 44.0301.02.
Reference: [2] Salem, R.: Détermination de l'ordre de grandeur à l'origine de certains séries trigonométriques.C. R. Acad. Sci. Paris 186 (1928), 1804-1806 \JFM 54.0313.01.
Reference: [3] Salem, R.: Essais sur les séries trigonométriques.Paris (1940) \JFM 66.1235.02. Zbl 0027.20901, MR 0002656
Reference: [4] Hartman, Ph., Wintner, A.: On sine series with monotone coefficients.J. London Math. Soc. 28 (1953), 102-104. Zbl 0050.07206, MR 0051959, 10.1112/jlms/s1-28.1.102
Reference: [5] Shogunbekov, Sh. Sh.: Certain estimates for sine series with convex coefficients.Russian Primenenie Funkcional'nogo analiza v teorii priblizhenii, Tver' (1993), 67-72.
Reference: [6] Aljančić, S., Bojanić, R., Tomić, M.: Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones.Publ. Inst. Math. Acad. Serie Sci. 10 (1956), 101-120. MR 0082579
Reference: [7] Krasniqi, Xh. Z., Braha, N. L.: On the behavior of $r$-th derivative near the origin of sine series with convex coefficients.J. Inequal. Pure Appl. Math. 8 (2007), 1, Paper No. 22 (electronic only), 6 pp., http://jipam.vu.edu.au. MR 2295716
Reference: [8] Telyakovskiǐ, S. A.: On the behavior near the origin of the sine series with convex coefficients.Publ. Inst. Math. Nouvelle Sér. 58 (1995), 43-50. MR 1396113
Reference: [9] Popov, A. Yu.: Estimates of the sums of sine series with monotone coefficients of certain classes.Mathematical Notes 74 (2003), 829-840. Zbl 1156.42303, MR 2054006, 10.1023/B:MATN.0000009019.66625.fb
Reference: [10] Hardy, H. G.: On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters.Quarterly J. Math. 37 (1906), 53-79 (Collected Papers: Vol. IV, pp. 433-459).
Reference: [11] Wittaker, E. T., Watson, G. N.: A course of modern analysis I.Nauka Moskva (1963), Russian.
Reference: [12] Vukolova, T. M., Dyachenko, M. I.: Bounds for norms of sums of double trigonometric series with multiply monotone coefficients.Russ. Math. (1994), 38 18-26. MR 1317218
Reference: [13] Vukolova, T. M., Dyachenko, M. I.: On the properties of sums of trigonometric series with monotone coefficients.Mosc. Univ. Math. Bull. (1995), 50 19-27. Zbl 0881.42004, MR 1376350
.

Files

Files Size Format View
MathBohem_134-2009-3_2.pdf 269.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo