Previous |  Up |  Next

Article

Title: Existence of multiple positive solutions of $n{\rm th}$-order $m$-point boundary value problems (English)
Author: Liang, Sihua
Author: Zhang, Jihui
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 1
Year: 2010
Pages: 15-28
Summary lang: English
.
Category: math
.
Summary: The paper deals with the existence of multiple positive solutions for the boundary value problem $$ \begin{cases} (\varphi (p(t)u^{(n-1)})(t))' + a(t)f(t, u(t), u'(t), \ldots , u^{(n-2)}(t)) = 0, \quad \ 0 < t < 1, \\ u^{(i)}(0) = 0, \quad i = 0, 1, \ldots , n - 3,\\ u^{(n-2)}(0) = \sum _{i=1}^{m-2}\alpha _iu^{(n-2)}(\xi _i),\quad u^{(n-1)}(1) = 0, \end{cases} $$ where $\varphi \colon \Bbb R \rightarrow \Bbb R$ is an increasing homeomorphism and a positive homomorphism with $\varphi (0) = 0$. Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem. (English)
Keyword: boundary-value problems
Keyword: positive solutions
Keyword: fixed-point theorem
Keyword: cone
MSC: 34B18
idZBL: Zbl 1224.34068
idMR: MR2643352
DOI: 10.21136/MB.2010.140679
.
Date available: 2010-07-20T18:19:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140679
.
Reference: [1] Agarwal, R. P., O'Regan, D.: Multiplicity results for singular conjuate, focal, and $(N, P)$ problems.J. Differ. Equations 170 142-156 (2001). MR 1813103, 10.1006/jdeq.2000.3808
Reference: [2] Bai, C., Fang, J.: Existence of multiple positive solution for nonlinear $m$-point boundary value problems.Appl. Math. Comput. 140 (2003), 297-305. MR 1953901, 10.1016/S0096-3003(02)00227-8
Reference: [3] Baxley, J. V.: Existence and uniqueness of nonlinear boundary value problems on infinite intervals.J. Math. Anal. Appl. 147 (1990), 122-133. MR 1044690, 10.1016/0022-247X(90)90388-V
Reference: [4] Deimling, K.: Nonlinear Functional Analysis.Springer, New York (1985). Zbl 0559.47040, MR 0787404
Reference: [5] Feng, W., Webb, J. R. L.: Solvability of an $m$-point boundary value problems with nonlinear growth.J. Math. Anal. Appl. 212 (1997), 467-480. MR 1464891, 10.1006/jmaa.1997.5520
Reference: [6] Il'in, V. A., Moiseev, E. I.: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator.Differ. Equations 23 (1987), 979-987.
Reference: [7] al, P. Kelevedjiev et: Another understanding of fourth-order four-point boundary-value problems.Electron. J. Differ. Equ., Paper No. 47 (2008), 1-15. MR 2392951
Reference: [8] Kong, L., Kong, Q.: Second-order boundary value problems with nonhomogeneous boundary conditions (II).J. Math. Anal. Appl. 330 (2007), 1393-1411. Zbl 1119.34009, MR 2308449, 10.1016/j.jmaa.2006.08.064
Reference: [9] Lan, K. Q.: Multiple positive solutions of semilinear differential equations with singularities.J. London Math. Soc. 63 (2001), 690-704. Zbl 1032.34019, MR 1825983, 10.1112/S002461070100206X
Reference: [10] Liang, S. H., Zhang, J. H.: The existence of countably many positive solutions for nonlinear singular $m$-point boundary value problems.J. Comput. Appl. Math. 214 (2008), 78-89. Zbl 1183.34031, MR 2391674, 10.1016/j.cam.2007.02.020
Reference: [11] Liu, B. F., Zhang, J. H.: The existence of positive solutions for some nonlinear boundary value problems with linear mixed boundary conditions.J. Math. Anal. Appl. 309 (2005), 505-516. Zbl 1086.34022, MR 2154132, 10.1016/j.jmaa.2004.09.036
Reference: [12] Liu, Yuji: Non-homogeneous boundary-value problems of higher order differential equations with $p$-Laplacian.Electron J. Differ. Equ., Paper No. 20 (2008), 1-43. Zbl 1139.34012, MR 2383384
Reference: [13] Wang, J. Y.: The existence of positive solutions for the one-dimensional $p$-Laplacian.Proc. Amer. Math. Soc. 125 (1997), 2275-2283. Zbl 0884.34032, MR 1423340, 10.1090/S0002-9939-97-04148-8
Reference: [14] Wang, Y., Ge, W.: Existence of multiple positive solutions for multi-point boundary value problems with a one-dimensional $p$-Laplacian.Nonlinear Anal., Theory Methods Appl. 67 (2007), 476-485. MR 2317182
Reference: [15] Wang, Y., Hou, C.: Existence of multiple positive solutions for one-dimensional $p$-Laplacian.J. Math. Anal. Appl. 315 (2006), 144-153. Zbl 1098.34017, MR 2196536, 10.1016/j.jmaa.2005.09.085
Reference: [16] Webb, J. R. L.: Positive solutions of some three point boundary value problems via fixed point index theory.Nonlinear Anal. 47 (2001), 4319-4332. Zbl 1042.34527, MR 1975828, 10.1016/S0362-546X(01)00547-8
Reference: [17] Zhou, Y. M., Su, H.: Positive solutions of four-point boundary value problems for higher-order with $p$-Laplacian operator.Electron. J. Differ. Equ., Paper No. 05 1-14 (2007). Zbl 1118.34021, MR 2278419
.

Files

Files Size Format View
MathBohem_135-2010-1_2.pdf 274.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo