Title:
|
On the lonely runner conjecture (English) |
Author:
|
Pandey, Ram Krishna |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
135 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
63-68 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose $k+1$ runners having nonzero distinct constant speeds run laps on a unit-length circular track. The Lonely Runner Conjecture states that there is a time at which a given runner is at distance at least $1/(k+1)$ from all the others. The conjecture has been already settled up to seven ($k \leq 6$) runners while it is open for eight or more runners. In this paper the conjecture has been verified for four or more runners having some particular speeds using elementary tools. (English) |
Keyword:
|
congruences |
Keyword:
|
arithmetic progression |
Keyword:
|
bi-arithmetic progression |
MSC:
|
11B25 |
MSC:
|
11B75 |
idZBL:
|
Zbl 1224.11013 |
idMR:
|
MR2643356 |
DOI:
|
10.21136/MB.2010.140683 |
. |
Date available:
|
2010-07-20T18:22:56Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140683 |
. |
Reference:
|
[1] Barajas, J., Serra, O.: Regular chromatic number and the lonely runner problem.Electron. Notes Discrete Math. 29 (2007), 479-483. Zbl 1215.05052, MR 2398840, 10.1016/j.endm.2007.07.085 |
Reference:
|
[2] Barajas, J., Serra, O.: The lonely runner with seven runners.Electron. J. Combin. 15 (2008), \# R 48. Zbl 1206.11030, MR 2398840, 10.37236/772 |
Reference:
|
[3] Betke, U., Wills, J. M.: Untere Schranken für zwei diophantische Approximations-Funktionen.Monatsh. Math. 76 (1972), 214-217. Zbl 0239.10016, MR 0313194, 10.1007/BF01322924 |
Reference:
|
[4] Bienia, W., Goddyn, L., Gvozdjak, P., Sebő, A., Tarsi, M.: Flows, view obstructions and the lonely runner.J. Combin. Theory Ser. B 72 (1998), 1-9. MR 1604673, 10.1006/jctb.1997.1770 |
Reference:
|
[5] Bohman, T., Holzman, R., Kleitman, D.: Six lonely runners.Electron. J. Combin. 8 (2001), \# R 3. Zbl 1011.11048, MR 1853254, 10.37236/1602 |
Reference:
|
[6] Cusick, T. W.: View-obstruction problems in $n$-dimensional geometry.J. Combin. Theory Ser. A 16 (1974), 1-11. Zbl 0273.10025, MR 0332539, 10.1016/0097-3165(74)90066-1 |
Reference:
|
[7] Cusick, T. W., Pomerance, C.: View-obstruction problems III.J. Number Theory 19 (1984), 131-139. Zbl 0563.10026, MR 0762763, 10.1016/0022-314X(84)90097-0 |
Reference:
|
[8] Freiman, G. A.: Foundations of a structural theory of set addition.Transl. Math. Monogr. 37 (1973), American Mathematical Society, Providence, R.I Zbl 0271.10044, MR 0360496 |
Reference:
|
[9] Freiman, G. A.: Inverse problem of additive number theory IV. On addition of finite sets II.Ucen. Zap. Elabuz. Gos. Ped. Inst. 8 (1960), 72-116. |
Reference:
|
[10] Haralambis, N. M.: Sets of integers with missing differences.J. Combin. Theory Ser. A 23 (1977), 22-33. Zbl 0359.10047, MR 0453689, 10.1016/0097-3165(77)90076-0 |
Reference:
|
[11] Jin, R.: Freiman's inverse problem with small doubling property.Adv. Math. 216 (2007), 711-752. Zbl 1231.11012, MR 2351375, 10.1016/j.aim.2007.06.002 |
Reference:
|
[12] Pandey, R. K.: A note on the lonely runner conjecture.J. Integer Sequences 12 (2009), Article 09.4.6. Zbl 1233.11026, MR 2511224 |
Reference:
|
[13] Renault, J.: View-obstruction: a shorter proof for six lonely runners.Discrete Math. 287 (2004), 93-101. MR 2094060, 10.1016/j.disc.2004.06.008 |
Reference:
|
[14] Wills, J. M.: Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen.Monatsh. Math. 71 (1967), 263-269. Zbl 0148.27505, MR 0227112, 10.1007/BF01298332 |
. |