Previous |  Up |  Next

Article

Title: On the solution of linear algebraic systems arising from the semi–implicit DGFE discretization of the compressible Navier–Stokes equations (English)
Author: Dolejší, Vít
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 2
Year: 2010
Pages: 260-280
Summary lang: English
.
Category: math
.
Summary: We deal with the numerical simulation of a motion of viscous compressible fluids. We discretize the governing Navier–Stokes equations by the backward difference formula – discontinuous Galerkin finite element (BDF-DGFE) method, which exhibits a sufficiently stable, efficient and accurate numerical scheme. The BDF-DGFE method requires a solution of one linear algebra system at each time step. In this paper, we deal with these linear algebra systems with the aid of an iterative solver. We discuss the choice of the preconditioner, stopping criterion and the choice of the time step and propose a new strategy which leads to an efficient and accurate numerical scheme. (English)
Keyword: discontinuous Galerkin method
Keyword: compressible Navier–Stokes equations
Keyword: linear algebra problems
Keyword: preconditioning
Keyword: stopping criterion
Keyword: choice of the time step
MSC: 35Q35
MSC: 65L06
MSC: 65M22
MSC: 76M10
MSC: 76N15
MSC: 76N99
idZBL: Zbl pre05773708
idMR: MR2663600
.
Date available: 2010-09-13T16:39:55Z
Last updated: 2013-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140743
.
Reference: [1] Arnold, D. N.: An interior penalty finite element method with discontinuous elements.SIAM J. Numer. Anal. 19 (1982), 4, 742–760. Zbl 0482.65060, MR 0664882, 10.1137/0719052
Reference: [2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 5, 1749–1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [3] Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations.J. Comput. Phys. 131 (1997), 267–279. Zbl 0871.76040, MR 1433934, 10.1006/jcph.1996.5572
Reference: [4] Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flow.In: Discontinuous Galerkin Method: Theory, Computations and Applications (B. Cockburn, G. E. Karniadakis, and C. W. Shu, eds.), (Lecture Notes in Computat. Sci. Engrg. 11.) Springer-Verlag, Berlin 2000, pp. 113–123. MR 1842164
Reference: [5] Baumann, C. E., Oden, J. T.: A discontinuous $hp$ finite element method for the Euler and Navier-Stokes equations.Internat. J. Numer. Methods Fluids 31 (1999), 1, 79–95. Zbl 0985.76048, MR 1714511, 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
Reference: [6] Ciarlet, P. G.: The Finite Elements Method for Elliptic Problems.North-Holland, Amsterdam – New York – Oxford 1979. MR 0520174
Reference: [7] Cockburn, B., Hou, S., Shu, C. W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element for conservation laws IV: The multi-dimensional case.Math. Comp. 54 (1990), 545–581. MR 1010597
Reference: [8] Dawson, C. N., Sun, S., Wheeler, M. F.: Compatible algorithms for coupled flow and transport.Comput. Meth. Appl. Mech. Engrg. 193 (2004), 2565–2580. Zbl 1067.76565, MR 2055253, 10.1016/j.cma.2003.12.059
Reference: [9] Dolejší, V.: On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations.Internat. J. Numer. Methods Fluids 45 (2004), 1083–1106. MR 2072224, 10.1002/fld.730
Reference: [10] Dolejší, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows.Commun. Comput. Phys. 4 (2008), 2, 231–274. MR 2440946
Reference: [11] Dolejší, V., Kůs, P.: Adaptive backward difference formula – discontinuous Galerkin finite element method for the solution of conservation laws.Internat. J. Numer. Methods Engrg. 73 (2008), 12, 1739–1766. MR 2397970, 10.1002/nme.2143
Reference: [12] Dolejší, V.: Discontinuous Galerkin method for the numerical simulation of unsteady compressible flow.WSEAS Trans. on Systems 5 (2006), 5, 1083–1090.
Reference: [13] Dolejší, V., Feistauer, M.: Semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow.J. Comput. Phys. 198 (2004), 2, 727–746. MR 2062915, 10.1016/j.jcp.2004.01.023
Reference: [14] Dumbser, M., Munz, C. D.: Building blocks for arbitrary high-order discontinuous Galerkin methods.J. Sci. Comput. 27 (2006), 215–230. MR 2285777, 10.1007/s10915-005-9025-0
Reference: [15] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow.Oxford University Press, Oxford 2003. MR 2261900
Reference: [16] Feistauer, M., Kučera, V.: On a robust discontinuous Galerkin technique for the solution of compressible flow.J. Comput. Phys. 224 (2007), 1, 208–221. MR 2322268, 10.1016/j.jcp.2007.01.035
Reference: [17] Feistauer, M., Kučera, V., Prokopová, J.: Discontinuous Galerkin solution of compressible flow in time dependent domains.Math. Comput. Simulations 80 (2010), 8, 1612-1623. MR 2647255, 10.1016/j.matcom.2009.01.020
Reference: [18] Hairer, E., Norsett, S. P., Wanner, G.: Solving ordinary differential equations I, Nonstiff problems.(Springer Series in Computational Mathematics No. 8.) Springer Verlag, Berlin 2000. MR 1227985
Reference: [19] Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: Method formulation.Internat. J. Numer. Anal. Model. 1 (2006), 1–20. Zbl 1129.76030, MR 2208562
Reference: [20] Klaij, C. M., Vegt, J. van der, Ven, H. V. der: Pseudo-time stepping for space-time discontinuous Galerkin discretizations of the compressible Navier–Stokes equations.J. Comput. Phys. 219 (2006), 2, 622–643. MR 2274951, 10.1016/j.jcp.2006.04.003
Reference: [21] Lörcher, F., Gassner, G., Munz, C. D.: A discontinuous Galerkin scheme based on a spacetime expansion.I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32 (2007), 2, 175–199. MR 2320569, 10.1007/s10915-007-9128-x
Reference: [22] Rivière, B., Wheeler, M. F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems.I. Comput. Geosci. 3 (1999), 3-4, 337–360. MR 1750076
Reference: [23] Watkins, D. S.: Fundamentals of Matrix Computations.(Pure and Applied Mathematics, Wiley-Interscience Series of Texts, Monographs, and Tracts.) John Wiley , New York 2002. MR 1899577
.

Files

Files Size Format View
Kybernetika_46-2010-2_4.pdf 910.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo