Title:
|
Tree and local computations in a cross–entropy minimization problem with marginal constraints (English) |
Author:
|
Malvestuto, Francesco M. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
621-654 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In probability theory, Bayesian statistics, artificial intelligence and database theory the minimum cross-entropy principle is often used to estimate a distribution with a given set $P$ of marginal distributions under the proportionality assumption with respect to a given ``prior'' distribution $q$. Such an estimation problem admits a solution if and only if there exists an extension of $P$ that is dominated by $q$. In this paper we consider the case that $q$ is not given explicitly, but is specified as the maximum-entropy extension of an auxiliary set $Q$ of distributions. There are three problems that naturally arise: (1) the existence of an extension of a distribution set (such as $P$ and $Q$), (2) the existence of an extension of $P$ that is dominated by the maximum entropy extension of $Q$, (3) the numeric computation of the minimum cross-entropy extension of $P$ with respect to the maximum entropy extension of $Q$. In the spirit of a divide-and-conquer approach, we prove that, for each of the three above-mentioned problems, the global solution can be easily obtained by combining the solutions to subproblems defined at node level of a suitable tree. (English) |
Keyword:
|
cross-entropy |
Keyword:
|
acyclic hypergraph |
Keyword:
|
connection tree |
Keyword:
|
junction tree |
Keyword:
|
probabilistic database |
Keyword:
|
relational database |
MSC:
|
62A10 |
MSC:
|
93E12 |
idZBL:
|
Zbl 1204.93113 |
idMR:
|
MR2722092 |
. |
Date available:
|
2010-10-22T05:23:52Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140775 |
. |
Reference:
|
[1] Asmussen, S., Edwards, D.: Collapsibility and response variables in contingency tables.Biometrika 70 (1983), 367–378. Zbl 0549.62041, MR 0725370, 10.1093/biomet/70.3.567 |
Reference:
|
[2] Bacharach, M.: Biproportional Matrices and Input-Output Change.Cambridge University Press, Cambridge 1970. Zbl 0195.49705, MR 0263409 |
Reference:
|
[3] Badsberg, J.-H., Malvestuto, F. M.: An implementation of the iterative proportional fitting procedure by propagation trees.Comput. Statist. Data Analysis 37 (2001), 297–322. Zbl 1061.65500, MR 1856676, 10.1016/S0167-9473(01)00013-5 |
Reference:
|
[4] Beeri, C., Vardi, M.: On the Properties of Full Join Dependencies.Adv. Database Theory I, Plenum Press, New York 1981. |
Reference:
|
[5] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. Assoc. Comput. Mach. 30 (1983), 479–513. Zbl 0624.68087, MR 0709830, 10.1145/2402.322389 |
Reference:
|
[6] Berge, C.: Hypergraphs.North-Holland, Amsterdam 1989. Zbl 0674.05001, MR 1013569 |
Reference:
|
[7] Berge, C.: Discrete Multivariate Analysis.MIT Press, Cambridge 1975. |
Reference:
|
[8] Csiszár, I.: I-divergence geometry of probability distributions and minimization problems.Ann. Probab. 3 (1975), 146–158. MR 0365798, 10.1214/aop/1176996454 |
Reference:
|
[9] Csiszár, I.: Maxent, mathematics, and information theory.In: Proc. Internat. Workshop on “Maximum entropy and Bayesian methods", 1995, pp. 35–50. MR 1446714 |
Reference:
|
[10] Dall’Aglio, G., Kotz, K., Salinetti, G.: Advances in Probability Distributions with Given Marginals.Kluwer Academic Pub., Dordrecht, Boston, London 1991. MR 1215942 |
Reference:
|
[11] Darroch, J. N., Ratcliff, D.: Generalized iterative scaling for log-linear models.Ann. Math. Statist. 43 (1972), 1470–1480. Zbl 0251.62020, MR 0345337, 10.1214/aoms/1177692379 |
Reference:
|
[12] Deming, W. E.: Statistical Adjustment of Data.Dover Pub., New York 1943. Zbl 0060.31504, MR 0009819 |
Reference:
|
[13] Deming, W. E., Stephan, F. F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known.Ann. Math. Statist. 11 (1940), 427–444. Zbl 0024.05502, MR 0003527, 10.1214/aoms/1177731829 |
Reference:
|
[14] Endo, Y., Takemura, A. I.: Iterative proportional scaling via decomposable submodels for contingency tables.Comput. Statist. Data Analysis 53 (2009), 966–978. MR 2657062, 10.1016/j.csda.2008.11.013 |
Reference:
|
[15] Fienberg, S. E.: An iterative procedure for estimation in contingency tables.Ann. Math. Statist. 41 (1970), 907–917. Zbl 0198.23401, MR 0266394, 10.1214/aoms/1177696968 |
Reference:
|
[16] Fienberg, S. E., Meyer, M. M.: Iterative proportional fitting.In: Encyclopedia of Statistical Sciences (S. Kotz, N. L. Johnson, and C. B. Read, eds.), 4, John Wiley and Sons, New York, pp. 275–279. |
Reference:
|
[17] Haberman, S. J.: Log-linear Models for Contingency Tables.University of Chicago Press, Chicago 1974. |
Reference:
|
[18] Ireland, C. T., Kullback, S.: Contingency tables with given marginals.Biometrika 55 (1968), 179–188. Zbl 0155.26701, MR 0229329, 10.1093/biomet/55.1.179 |
Reference:
|
[19] Jiroušek, R.: Composition of probability measures on finite spaces.In: Proc. XIII Internat. Conf. Uncertainty in Artificial Intelligence 1997, pp. 274–281. |
Reference:
|
[20] Jiroušek, R., Přeučil, S.: On the effective implementation of the iterative proportional fitting procedure.Comput. Statist. Data Analysis 19 (1995), 177–189. 10.1016/0167-9473(93)E0055-9 |
Reference:
|
[21] Johnson, R. W.: Axiomatic characterization of the directed divergences and their linear combinations.IEEE Trans. Inform. Theory 25 (1979), 709–716. Zbl 0422.60016, MR 0551270, 10.1109/TIT.1979.1056113 |
Reference:
|
[22] Kellerer, H. G.: Verteilungsfunktionen mit gegebenen marginalverteilungen.Zeitschrift Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 247–270. Zbl 0126.34003, MR 0175158, 10.1007/BF00534912 |
Reference:
|
[23] Kellerer, H. G.: Masstheoretische marginalprobleme.Math. Annalen 153 (1964), 168–198. Zbl 0118.05003, MR 0161956, 10.1007/BF01360315 |
Reference:
|
[24] Kern-Isberner, G.: Characterizing the principle of minimum-cross entropy within a conditional-logical framework.Artificial Intelligence 98 (1998), 169–208. Zbl 0903.68181, MR 1614388, 10.1016/S0004-3702(97)00068-4 |
Reference:
|
[25] Ku, H. H., Kullback, S.: Interaction in multidimensional contingency tables: an information-theoretic approach.J. Res. Nat. Bur. Standards - Math. Sci. 72 B (1968), 159–199. Zbl 0274.62036, MR 0258223 |
Reference:
|
[26] Lauritzen, S. L.: Graphical Models.Oxford Science Pub., Clarendom Press, Oxford 1996. MR 1419991 |
Reference:
|
[27] Lauritzen, S. L., Speed, M. P., Vijayan, K.: Decomposable graphs and hypergraphs.J. Austral. Math. Soc. Ser. A 36 (1984), 12–29. Zbl 0533.05046, MR 0719998, 10.1017/S1446788700027300 |
Reference:
|
[28] Lauritzen, S. L., Spiegelhalter, D. J.: Local computations with probabilities on graphical structures and their application to expert systems.J. Roy. Stat. Soc. Ser. B 50 (1988), 157–224. Zbl 0684.68106, MR 0964177 |
Reference:
|
[29] Leimer, G.: Optimal decomposition by clique separators.Discrete Math. 113 (1993), 99–123. Zbl 0793.05128, MR 1212872, 10.1016/0012-365X(93)90510-Z |
Reference:
|
[30] Leontief, W. W.: The Structure of American Economy 1919–1929.Oxford University Press, New York 1941. |
Reference:
|
[31] Leontief, W. W., Strout, A.: Multiregional input-output analysis.In: Structural Interdependence and Economic Development, 1963, pp. 119–169. |
Reference:
|
[32] Madigan, D., Mosurski, K.: An extension of the results of Asmussen and Edwards on collapsibility in contingency tables.Biometrika 77 (1990), 315–319. Zbl 0731.62113, MR 1064803, 10.1093/biomet/77.2.315 |
Reference:
|
[33] Madigan, D., Mosurski, K.: Errata: An extension of the results of Asmussen and Edwards on collapsibility in contingency tables.Biometrika 86 (1999) 973. MR 1741994 |
Reference:
|
[34] Maier, D.: The Theory of Relational Databases.Computer Science Press, 1983. (http://web.cecs.pdx.edu/ maier/TheoryBook/TRD.html) Zbl 0519.68082, MR 0691493 |
Reference:
|
[35] Maier, D., Ullman, J. D.: Connections in acyclic hypergraphs.Theoret. Comput. Sci. 32 (1984), 185–199. Zbl 0557.05054, MR 0761167, 10.1016/0304-3975(84)90030-6 |
Reference:
|
[36] Malvestuto, F. M.: Answering queries in categorical data bases.In: Proc. VI ACM Symp. Principles of Database Systems 1987, pp. 87–96. |
Reference:
|
[37] Malvestuto, F. M.: Existence of extensions and product extensions for discrete probability distributions.Discrete Math. 69 (1988), 61–77. Zbl 0637.60021, MR 0935028, 10.1016/0012-365X(88)90178-1 |
Reference:
|
[38] Malvestuto, F. M.: Computing the maximum-entropy extension of given discrete probability distributions.Computat. Statist. Data Anal. 8 (1989), 299–311. Zbl 0726.62012, MR 1028405, 10.1016/0167-9473(89)90046-7 |
Reference:
|
[39] Malvestuto, F. M.: Testing implication of hierarchical loglinear models for discrete probability distributions.Statist. Computing 6 (1996), 169–176. 10.1007/BF00162528 |
Reference:
|
[40] Malvestuto, F. M.: A hypergraph-theoretic analysis of collapsibility and decomposability for extended loglinear models.Statist. Computing 11 (2001), 155–169. MR 1837135, 10.1023/A:1008979300007 |
Reference:
|
[41] Malvestuto, F. M.: From conditional independences to factorization constraints with discrete random variables.Ann. Math. Artificial Intelligence 35 (2002), 253–285. Zbl 1001.68033, MR 1899954, 10.1023/A:1014551721406 |
Reference:
|
[42] Malvestuto, F. M.: Canonical and monophonic convexities in hypergraphs. Discrete Math. 309 (2009), 4287–4298. Zbl 1211.05093, MR 2519164, 10.1016/j.disc.2009.01.003 |
Reference:
|
[43] Malvestuto, F. M., Moscarini, M.: A fast algorithm for query optimization in universal-relation databases.J. Comput. System Sci. 56 (1998), 299–309. Zbl 0913.68060, MR 1633981, 10.1006/jcss.1998.1570 |
Reference:
|
[44] Malvestuto, F. M., Moscarini, M.: Decomposition of a hypergraph by partial-edge separators.Theoret. Comput. Sci. 237 (2000), 57–79. Zbl 0939.68089, MR 1756201, 10.1016/S0304-3975(98)00128-5 |
Reference:
|
[45] Malvestuto, F. M., Pourabbas, E.: Customized answers to summary queries via aggregate views.In: Proc. XVI Intl. Conf. Scientific & Statistical Database Management 2004, pp. 193–202. |
Reference:
|
[46] Malvestuto, F. M., Pourabbas, E.: Local computation of answers to table queries on summary databases.In: Proc. XVII Intl. Conf. Scientific & Statistical Database Management 2005, pp. 263–272. |
Reference:
|
[47] Matúš, F.: Discrete marginal problem for complex measures.Kybernetika 24 (1988), 36–46. MR 0936552 |
Reference:
|
[48] Matúš, F.: On the maximum-entropy extensions of probability measures over undirected graphs.In: Proc. III Workshop Uncertainty Processing in Expert Systems 1994, pp. 181–198. |
Reference:
|
[49] Matúš, F., Flusser, J.: Image representations via a finite Radon transform.IEEE Trans. Pattern Analysis and Machine Intelligence 15 (1993), 996–1006. 10.1109/34.254058 |
Reference:
|
[50] Purcell, N. J., Kish, L.: Estimation for small domains.Biometrics 35 (1979), 365–384. Zbl 0419.62092, MR 0535774, 10.2307/2530340 |
Reference:
|
[51] Purcell, N. J., Kish, L.: Postcensal estimates for local areas (or domains).Internat. Statist. Rev. 48 (1980), 3–18. Zbl 0433.62080, 10.2307/1402400 |
Reference:
|
[52] Rüschendorf, L.: Convergence of the iterative proportional fitting procedure.Ann. Statist. 23 (1995), 1160–1174. MR 1353500, 10.1214/aos/1176324703 |
Reference:
|
[53] Shore, J. E., Johnson, R. W.: Properties of cross-entropy minimization.IEEE Trans. Inform. Theory 27 (1981), 472–482. Zbl 0459.94008, MR 0635526, 10.1109/TIT.1981.1056373 |
Reference:
|
[54] Stephan, F. F.: An iterative method of adjusting sample frequencies tables when expected marginal totals are known.Ann. Math. Statist. 13 (1942), 166–178. MR 0006674, 10.1214/aoms/1177731604 |
Reference:
|
[55] Stone, R., Brown, A.: A Computable Model for Economic Growth: A Programme for Growth, No. 1.Chapman Hall, London 1962. |
Reference:
|
[56] Tarjan, R. E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce hypergraphs.SIAM J. Comput. 13 (1984), 566–579. MR 0749707, 10.1137/0213035 |
Reference:
|
[57] Vomlel, J.: Integrating inconsistent data in a probabilistic model.J. Appl. Non-Classical Logics 14 (2004), 365–386. Zbl 1185.68699, 10.3166/jancl.14.367-386 |
Reference:
|
[58] Vorob’ev, N. N.: Consistent families of measures and their extensions.Theor. Prob. Appl. 7 (1962), 147–163. 10.1137/1107014 |
Reference:
|
[59] Vorob’ev, N. N.: Markov measures and Markov extensions.Theor. Prob. Appl. 8 (1963), 420–429. MR 0169295, 10.1137/1108047 |
Reference:
|
[60] Yannakakis, M.: Computing the minimum fill-in is NP-complete.SIAM J. Algebraic Discrete Mathematics 2 (1981), 77–79. Zbl 0496.68033, MR 0604513, 10.1137/0602010 |
Reference:
|
[61] Yannakakis, M.: Algorithms for acyclic database schemes.In: Proc. VII Internat. Conf. Very Large Data Bases 1981, pp. 82–94. |
. |