Previous |  Up |  Next

Article

Title: Primal interior point method for minimization of generalized minimax functions (English)
Author: Lukšan, Ladislav
Author: Matonoha, Ctirad
Author: Vlček, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 4
Year: 2010
Pages: 697-721
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. (i. e. interior point method that uses explicitly computed approximations of Lagrange multipliers instead of their updates). Next we describe the basic algorithm and give more details concerning its implementation covering numerical differentiation, variable metric updates, and a barrier parameter decrease. Using standard weak assumptions, we prove that this algorithm is globally convergent if a bounded barrier is used. Then, using stronger assumptions, we prove that it is globally convergent also for the logarithmic barrier. Finally, we present results of computational experiments confirming the efficiency of the primal interior point method for special cases of generalized minimax problems. (English)
Keyword: unconstrained optimization
Keyword: large-scale optimization
Keyword: nonsmooth optimization
Keyword: generalized minimax optimization
Keyword: interior-point methods
Keyword: modified Newton methods
Keyword: variable metric methods
Keyword: global convergence
Keyword: computational experiments
MSC: 49K35
MSC: 90C06
MSC: 90C47
MSC: 90C51
idZBL: Zbl 1204.49022
idMR: MR2722096
.
Date available: 2010-10-22T05:28:15Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140779
.
Reference: [1] Bertsekas, D. P.: Nondifferentiable optimization via approximation.In: Nondifferentiable Optimization (M. L. Balinski and P.Wolfe, eds.), Math. Programming Stud. 3 (1975), 1–25. Zbl 0383.49025, MR 0440906
Reference: [2] Coleman, T. F., Garbow, B. S., Moré, J. J.: Software for estimating sparse Hessian matrices.ACM Trans. Math. Software 11 (1985), 363–377. MR 0828562, 10.1145/6187.6190
Reference: [3] Coleman, T. F., Moré, J. J.: Estimation of sparse Hessian matrices and graph coloring problems.Math. Programming 28 (1984), 243–270. MR 0736293, 10.1007/BF02612334
Reference: [4] Demyanov, V. F., Malozemov, V. N.: Introduction to Minimax.Dover Publications, 1990. MR 1088479
Reference: [5] Fletcher, R.: Practical Methods of Optimization.Second edition. Wiley, New York 1987. Zbl 0905.65002, MR 0955799
Reference: [6] Gill, P. E., Murray, W.: Newton type methods for unconstrained and linearly constrained optimization.Math. Programming 7 (1974), 311–350. Zbl 0297.90082, MR 0356503, 10.1007/BF01585529
Reference: [7] Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.SIAM, Philadelphia 2000. Zbl 0958.65028, MR 1753583
Reference: [8] Griewank, A., Toint, P. L.: Partitioned variable metric updates for large-scale structured optimization problems.Numer. Math. 39 (1982), 119–137. MR 0664541, 10.1007/BF01399316
Reference: [9] Le, D.: Three new rapidly convergent algorithms for finding a zero of a function.SIAM J. Sci. Stat. Computat. 6 (1985), 193–208. Zbl 0561.65033, MR 0773291, 10.1137/0906016
Reference: [10] Le, D.: An efficient derivative-free method for solving nonlinear equations.ACM Trans. Math. Software 11 (1985), 250–262. Zbl 0581.65033, MR 0814340, 10.1145/214408.214416
Reference: [11] Lukšan, L., Matonoha, C., Vlček, J.: Interior point method for nonlinear nonconvex optimization.Numer. Linear Algebra Appl. 11 (2004), 431–453. MR 2067814, 10.1002/nla.354
Reference: [12] Lukšan, L., Matonoha, C., Vlček, J.: On Lagrange multipliers of trust-region subproblems.BIT Numer. Math. 48 (2008), 763–768. Zbl 1203.65092, MR 2465702, 10.1007/s10543-008-0197-5
Reference: [13] Lukšan, L., Matonoha, C., Vlček, J.: Primal interior-point method for large sparse minimax optimization.Kybernetika 45 (2009), 841–864. Zbl 1198.90394, MR 2599116
Reference: [14] Lukšan, L., Matonoha, C., Vlček, J.: Trust-region interior-point method for large sparse $l_1$ optimization.Optimization Methods and Software 22 (2007), 737–753. Zbl 1193.90197, MR 2354765, 10.1080/10556780601114204
Reference: [15] Lukšan, L., Spedicato, E.: Variable metric methods for unconstrained optimization and nonlinear least squares.J. Comput. Appl. Math. 124 (2000), 61–93. MR 1803294, 10.1016/S0377-0427(00)00420-9
Reference: [16] Lukšan, L., Vlček, J.: Sparse and Partially Separable Test Problems for Unconstrained and Equality Constrained Optimization.Technical Report V-767, ICS AS ČR, Prague 1998.
Reference: [17] Lukšan, L., Vlček, J.: Variable metric method for minimization of partially separable nonsmooth functions.Pacific J. Optim. 2 (2006), 59–70. MR 2548209
Reference: [18] Pillo, G. Di, Grippo, L., Lucidi, S.: Smooth transformation of the generalized minimax problem.J. Optim. Theory Appl. 95 (1997), 1–24. Zbl 0890.90165, MR 1477348, 10.1023/A:1022627226891
Reference: [19] Vanderbei, J., Shanno, D. F.: An interior point algorithm for nonconvex nonlinear programming.Comput. Optim. Appl. 13 (1999), 231–252. Zbl 1040.90564, MR 1704122, 10.1023/A:1008677427361
Reference: [20] Xu, S.: Smoothing methods for minimax problems.Computational Optim. Appl. 20 (2001), 267–279. MR 1857058, 10.1023/A:1011211101714
.

Files

Files Size Format View
Kybernetika_46-2010-4_8.pdf 371.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo