Previous |  Up |  Next

Article

Title: A note on fusion Banach frames (English)
Author: Kaushik, S. K.
Author: Kumar, Varinder
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 3
Year: 2010
Pages: 203-209
Summary lang: English
.
Category: math
.
Summary: For a fusion Banach frame $(\lbrace G_n, v_n\rbrace , S)$ for a Banach space $E$, if $(\lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is a fusion Banach frame for $E^*$, then $(\lbrace G_n, v_n\rbrace , S; \lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is called a fusion bi-Banach frame for $E$. It is proved that if $E$ has an atomic decomposition, then $E$ also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given. (English)
Keyword: atomic decompositions
Keyword: fusion Banach frames
Keyword: fusion bi-Banach frames
MSC: 42A38
MSC: 42C15
MSC: 46B15
idZBL: Zbl 1240.42146
idMR: MR2735906
.
Date available: 2010-10-22T05:36:11Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/140788
.
Reference: [1] Benedetto, J. J., Fickus, M.: Finite normalized tight frames.Adv. Comput. Math. 18 (2–4) (2003), 357–385. Zbl 1028.42022, MR 1968126, 10.1023/A:1021323312367
Reference: [2] Casazza, P. G.: Custom Building finite frames.Wavelets, Frames and Operator Theory (Heil, C., Jorgensen, P. E. T., Larson, D. R., eds.), vol. 345, Contemp. Math., 2004, pp. 81–86. Zbl 1082.42024, MR 2066822
Reference: [3] Christensen, O.: An Introduction to Frames and Reisz Bases.Birkhäuser, 2002.
Reference: [4] Daubechies, I., Grossmann, A., Meyer, Y.: Painless non-orthogonal expansions.J. Math. Phys. 27 (1986), 1271–1283. MR 0836025, 10.1063/1.527388
Reference: [5] Duffin, R. J., Schaeffer, A. C.: A class of non-harmonic Fourier Series.Trans. Amer. Math. Soc. 72 (1952), 341–366. MR 0047179, 10.1090/S0002-9947-1952-0047179-6
Reference: [6] Feichtinger, H. G., Gröchenig, K.: A unified approach to atomic decompositons via integrable group representations.Proc. Conf. Function Spaces and Applications, Lecture Notes in Math. 1302, Berlin-Heidelberg-New York, Springer, 1988, pp. 52–73. MR 0942257
Reference: [7] Gröchenig, K.: Describing functions: Atomic decompositions versus frames.Monatsh. Math. 112 (1991), 1–41. MR 1122103, 10.1007/BF01321715
Reference: [8] Jain, P. K., Kaushik, S. K., Gupta, N.: On near exact Banach frames in Banach spaces.Bull. Austral. Math. Soc. 78 (2008), 335–342. Zbl 1214.42060, MR 2466869, 10.1017/S0004972708000889
Reference: [9] Jain, P. K., Kaushik, S. K., Kumar, V.: Frames of subspaces for Banach spaces.Int. J. Wavelets Multiresolut. Inf. Process. 8 (2) (2010), 243–252. MR 2651164, 10.1142/S0219691310003481
Reference: [10] Jain, P. K., Kaushik, S. K., Vashisht, L. K.: Banach frames for conjugate Banach spaces.Z. Anal. Anwendungen 23 (4) (2004), 713–720. Zbl 1059.42024, MR 2110399, 10.4171/ZAA/1217
Reference: [11] Jain, P. K., Kaushik, S. K., Vashisht, L. K.: On Banach frames.Indian J. Pure Appl. Math. 37 (5) (2006), 265–272. Zbl 1125.46013, MR 2271627
.

Files

Files Size Format View
ArchMathRetro_046-2010-3_4.pdf 444.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo